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Deformable model fitting has been an active area of research in computer
vision for over 20 years. Fitting a deformable model consists of registering
a parametric shape model to an image such that its landmarks accurately
describe the shape of the object being modelled. Although a large variety
of models and fitting strategies have been proposed throughout the years
[4, 6, 8, 10, 11, 12, 13, 14], in general, research in this area can be divided
into two different groups: (i) Holistic Deformable Models (HDMs) and (ii)
Parts-Based Deformable Models (PBDMs). The main difference between
both groups is the approach used to model object texture.

HDMs, such as Active Appearance Models (AAMs) [8, 10], define tex-
ture globally, typically, by means of a generative representation. Conse-
quently, HDMs fitting strategies are generally posed as a regularized search
for the optimal shape p and texture c parameters that minimize a global

measure of misalignment that simultaneously depends on the position of all
landmarks i.e.:

p
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R(p,c)+D(s, I) (1)

where R is a regularization term that penalizes complex shape and texture
deformations and D is a data term that quantifies the global measure of
misalignment given the current position of all landmark points x
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)T of the object on the image I. HDMs
are capable of producing very accurate fitting results [1, 3, 12]. However,
the large dimensionality of their parameter space makes them difficult to
optimize and likely to converge to undesirable local minima. Additionally,
they are also highly sensitive to inaccurate initializations.

On the contrary, PBDMs, such as Constrained Local Models (CLMs)
[7, 11], model texture locally as the combination of several independent
local texture parts. PBDMs fitting strategies are commonly formulated as
a regularized search for the optimal shape p parameters (local texture parts
are usually learned discriminatively) that jointly minimize v local measures
of misalignment dependent on each landmark x
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where, in this case, R is a regularization term that penalizes only complex
shape deformations and D

i

are independent data terms quantifying the local
misalignment measures given by the current position of each landmark x

i

on the image I. PBDMs are generally easier to optimize than HDMs, less
dependent on the initialization and better suited to handle partial occlusions
due to their local nature [4, 5, 9, 14]. However, they are unable to match the
accuracy of optimally fitted HDMs.

In this paper, we propose to overcome the previous limitations by uni-
fying holistic and parts-based deformable model fitting. To this end, we
derived a novel probabilistic formulation of the fitting problem that unifies
HDMs and PBDMs. This new probabilistic formulation poses the problem
of deformable fitting as a regularized search for the optimal shape p and tex-
ture c parameters that jointly minimize both a global misalignment measure
that depends simultaneously on all landmarks and a set of v independent
local measures of misalignment associated to each landmark, i.e.:
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where R(p,c) corresponds to a regularization term that penalizes complex
shape and texture deformations, D(s, I) denotes the global misalignment
measure and corresponds to the data term in HDMs fitting and Ân
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denote the v local measures of misalignment which correspond to the data
term in PBDMs fitting.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Our approach explicitly and optimally combines two of the most suc-
cessful and well-established frameworks for HDMs and PBDMs fitting, i.e.
AAMs and CLMs, using a unified Maximum A Posteriori (MAP) estimation
framework. The result is a combined cost function that can be iteratively
minimized using a variation of the Gauss-Newton algorithm in which the
solution at each iteration is given by an optimal, in a MAP sense, weighted
combination of the original AAMs and CLMs iterative solutions.

We show that our unified approach combines the advantages of both
HDMs and PBMs and considerably outperforms the accuracy of AAMs and
CLMs on the problem of face alignment in-the-wild by a large margin. Fur-
thermore, we show that our unified approach, trained using a relatively small
amount of training data, can compete and even surpass the accuracy of two
of the most recently proposed state-of-the-art techniques in face alignment
in-the-wild [12, 13] potentially trained with thousands of training examples.
An open-source implementation of the proposed method will be made avail-
able as part of the Menpo Project [2] http://www.menpo.org/.
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[5] Tadas BaltruÅąaitis, Peter Robinson, and Louis-Philippe Morency.

Continuous conditional neural fields for structured regression. In Eu-

ropean Conference on Computer Vision (ECCV), 2014.
[6] Xudong Cao, Yichen Wei, Fang Wen, and Jian Sun. Face alignment by

explicit shape regression. In Computer Vision and Pattern Recognition

(CVPR), 2012.
[7] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape

models: Their training and application. Computer Vision and Image

Understanding, 1995.
[8] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance

models. Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2001.
[9] Pedro Martins, Rui Caseiro, and Jorge Batista. Non-parametric

bayesian constrained local models. In Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2014.
[10] Iain Matthews and Simon Baker. Active appearance models revisited.

International Journal of Computer Vision (IJCV), 2004.
[11] Jason M. Saragih, Simon Lucey, and Jeffrey F. Cohn. Deformable

model fitting by regularized landmark mean-shift. International Jour-

nal of Computer Vision (IJCV), 2011.
[12] Georgios Tzimiropoulos and Maja Pantic. Gauss-newton deformable

part models for face alignment in-the-wild. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2014.
[13] Xuehan-Xiong and Fernando De la Torre. Supervised descent method

and its application to face alignment. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2013.
[14] Xiangxin Zhu and D Ramanan. Face detection, pose estimation, and

landmark localization in the wild. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2012.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.menpo.org/

