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Scene parsing is the assignment of semantic labels to each pixel in a scene
image. The recognition rate of parsing methods significantly varies among
different types of classes. Background classes are usually recognised with
a high rate (e.g., road and building). Foreground classes (e.g., person and
sign) represent salient image regions, but are frequently misclassified. Re-
cently, nonparametric image parsing methods have been proposed [1, 2, 3,
4, 6] to handle the increasing number of scene categories and semantic la-
bels. First, an image retrieval set is extracted, which contains the training
images that are most visually similar to the query image. The number of
candidate labels for a query image is restricted to those in the retrieval set
only. Second, classification likelihood scores of superpixels are obtained
through visual features matching. Finally, context is enforced through min-
imizing an energy function which combines the data cost and knowledge
about the classes co-occurences. Image retrieval is regarded as a very crit-
ical step [3, 6]; if the true labels are not included in the retrieved images,
there is no chance to recover from this error later in the pipeline.

‘We propose a novel nonparametric image parsing method that achieves
better overall accuracy with better coverage of rare classes. Our contribu-
tions: (1) Improving the likelihood scores of labels at superpixels through
combining classifiers. Our system combines the output probabilities of mul-
tiple classification models to produce a more balanced score for each label at
each superpixel. (2) Incorporating semantic context in a probabilistic frame-
work. To avoid the elimination of relevant labels in the filtering step, we do
not construct a retrieval set. Instead, we use label costs learned from the
contextual correlation of labels in similar scenes to achieve better results.

Fusing Classifiers Our method is inspired from ensemble classifier
methods that combine multiple classifiers to reach a better decision. Such
techniques are specifically useful if the classifiers are different, i.e., the error
reduction is related to the uncorrelation between the trained models [5]. To
this end, we train 4 Boosted Decision Tree (BDT) models with the following
training data criteria: (1) an unbalanced subsample of all classes, (2) a bal-
anced subsample of all classes, (3) a balanced subsample of classes occupy-
ing an average of less than x% of their images, and (4) a balanced subsample
of classes occupying an average of less than [x/2] % of their images. The
motivation is to reduce the correlation between the trained models. While
the unbalanced classifier mainly misclassifies the foreground classes, the
balanced classifiers recover some of these classes while making more mis-
takes on the background ones. By combining the likelihoods from all the
classifiers, a better decision is reached that covers more classes.

The final cost of assigning a label ¢ to a superpixel s; can then be repre-
sented as the combination of the likelihood scores of all classifiers:
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where Ly (si, ¢) is the combined likelihood score obtained by the weighted
sum of the scores from all classifiers:
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where L;(s;,¢) is the score from the j/” classifier, and w;(c) is the normal-
ized weight of the likelihood score of class c in the j* classifier.

We learn the weights w = [w;(c)] of all classes C in offline settings
using the training set. The weight w;(c) of class ¢ for the J™ classifier is
computed as the average ratio of the sum of all likelihoods of class ¢, to
the sum of all likelihoods of all classes ¢; € C\c of all superpixels s; € S.
The normalized weight w(c) of class ¢ can then be computed as: w;(c) =
Wwj(c)/ X j=1234W;(c). Normalizing the output likelihoods in this manner
gives a better chance for all classifiers to be considered in the result.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Ground truth

Full System

. riabeled
[ Duiding
I
person
W plant
pole
poster
purse
road
I sice v ak
— iy
steetight
faffc light
I fee

i ‘E
TE— wri—
Figure 1: Image parsing by combining likelihoods from unbalanced and

balanced classifiers to cover a wider range of classes.

Scene-Level Context We incorporate semantic context through using
label statistics instead of global visual features. The intuition is that ranking
by visual features often fails to retrieve similar images on the scene level
[4, 6]. However, ranking by label statistics, given a relatively good initial
labeling, retrieves more semantically similar images to remove outlier labels
and recover missing labels in a scene. Our approach does not limit the num-
ber of labels to those present in the retrieval set but instead uses the set to
compute the likelihoods in a k-nn fashion. The likelihoods are normalized
and smoothed to give a chance to labels not in the retrieval set.

For a given test image, let 7 C C be the set of unique labels which appear
in the initial labeling L. We model the conditional distribution P(c|T’) over
class labeling C given T. We compute P(c|T)Vc € C in a K-nn fashion:
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where K7 is the K-neighborhood of 7', n(c,X) is the number of superpixels
with label ¢ in X, ¢ is all labels except ¢, and |S| is the total number of
superpixels in the training set. We add a smoothing constant of value 1.

To get the neighborhood K7, we rank the training images by their dis-
tance to the query image. The distance between two images is computed as
the weighted size of intersection of their class labels, intuitively reflecting
that the neighbors of 7' are images with many shared labels with those in 7'.
We assign a different weight to each class in 7 in such a way to favor less-
represented classes. Once we obtained the likelihoods P(c|T'), we can define
alabel cost H(c) = —log(P(c|T)). Our final energy function becomes:

P(c|T) = ©)

E(L)=Y D(ls =cls)+2 Y. V(y.ls;)+ Y H(c).6(c),

s5;€S (i.j)eA ceC

“

where &(c) is the indicator function of label ¢, D(I;, = c|s;) is the data cost,
and V (I5;,l;;) is the smoothing cost.

Our system achieves state-of-the-art per-pixel recognition rates on two
large-scale datasets. We achieve 81.7% per-pixel accuracy and 50.1% per-
class accuracy on SIFTflow [2]. Our fusing classifiers step boosts the per-
class accuracy by 15% over the baseline. On LMSun [4], we achieve 61.2%
per-pixel accuracy and 16% per-class accuracy.
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