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Figure 1: Overview of our approach. We begin with a structured probabilistic model (CRF) trained
on a small set of labeled images; then search the large unlabeled pool for a set of informative
images to annotate where our current model is most uncertain, i.e. has highest entropy. Since
computing the exact entropy is NP-hard for loopy models, we approximate the Gibbs distribution
with a coarsened histogram over M bins. The bins we use are ‘circular rings’ of varying hamming-
ball radii around the highest scoring solution. This leads to a novel variational approximation of
entropy in structured models, and an efficient active learning algorithm.

A number of problems in Computer Vision – image segmentation, geometric
labeling, human body pose estimation – can be written as a mapping from an
input image x ∈ X to an exponentially large space Y of structured outputs.
For instance, in semantic segmentation, Y is the space of all possible (super-
)pixel labelings, |Y|= Ln, where n is the number of (super-)pixels and L is
the number of object labels that each (super-)pixel can take.

As a number of empirical studies have found [4, 8, 13], the amount
of training data is one of the most significant factors influencing the per-
formance of a vision system. Unfortunately, unlike unstructured prediction
problems – binary or multi-class classification – data annotation is a particu-
larly expensive activity for structured prediction. For instance, in image seg-
mentation annotations, we must label every (super-)pixel in every training
image, which may easily run into millions. In pose estimation annotations,
we must label 2D/3D locations of all body parts and keypoints of interest
in thousands of images. As a result, modern dataset collection efforts such
as PASCAL VOC [3], ImageNet [2], and MS COCO [6] typically involve
spending thousands of human-hours and dollars on crowdsourcing websites
such as Amazon Mechanical Turk.

Active learning [10] is a natural candidate for reducing annotation ef-
forts by seeking labels only on the most informative images, rather than the
annotator passively labeling all images, many of which may be uninforma-
tive. Unfortunately, active learning for structured-output models is challeng-
ing. Even the simplest definition of “informative” involves computing the
entropy of the learnt model over the output-space:

H(P) =−EP(y|x)[log(P(y|x))] (1a)

=− ∑
y∈Y

P(y|x) logP(y|x), (1b)

which is intractable due to the summation over an exponentially-large output
space Y .

Overview and Contributions. In this paper, we study active learning
for probabilistic models such as Conditional Random Fields (CRFs) that en-
code probability distributions over an exponentially-large structured output
space.

Our main technical contribution is a variational approach [12] for ap-
proximate entropy computation in such models. Specifically, we present a
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Figure 2: Accuracy vs the number of images annotated (shaded regions indicate confi-
dence intervals, achieved from 20 and 30 runs respectively). We can see that our approach
Active-PDivMAP outperforms all baselines and is very quickly able to reach the same per-
formance as annotating the entire dataset.

crude yet surprisingly effective histogram approximation to the Gibbs dis-
tribution, which replaces the exponentially-large support with a coarsened
distribution that may be viewed a histogram over M bins. As illustrated in
Fig. 1, each bin in the histogram corresponds to a subset of solutions – for
instance, all segmentations where size of foreground (number of ON pixels)
is in a specific range [L U ]. Computing the entropy of this coarse distri-
bution is simple since M is a small constant (∼10). Importantly, we prove
that the optimal histogram, i.e. one that minimizes the KL-divergence to the
Gibbs distribution, is composed of the mass of the Gibbs distribution in each
bin, i.e. ∑y∈bin P(y|x). Unfortunately, the problem of estimating sums of the
Gibbs distribution under general hamming-ball constraints continues to be
#P-complete [11]. Thus, we upper bound the mass of the distribution in a
bin with the maximum entry in a bin multiplied by the size of the bin. Fortu-
nately, finding the most probable configuration in a hamming ball has been
recently studied in the graphical models literature [1, 7, 9], and efficient
algorithms have been developed, which we use in this work.

We perform experiments on figure-ground image segmentation and coarse
3D geometric labeling [5]. As shown in Fig. 2, our proposed algorithm sig-
nificantly outperforms a large number of baselines and can help save hours
of human annotation effort.
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