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In real data analysis applications, we often have to face handling dirty obser-
vations, say incomplete or noisy data. Recovering the missing or noise-free
data from such observations thus becomes crucial to provide us more precise
information to refer to. Besides, compared to 1-D vectors and 2-D matrices,
the data encountered in real world applications is more likely to be high or-
der, for instance a multi-spectral image is a 3-D tensor and a color video is a
4-D tensor. This work concentrates on the problem of visual data recovery,
i.e. restoring tensors of visual data from polluted observations.

Suppose we have a matrix A∈RD1×D2 , the response of A to a directional
derivative-like filter fθ∗ can be computed by fθ∗ ∗ A. The traditional TV
norm takes into account only the responses to derivative filters along fibers.
In other words, it potentially ignores important details from other directions.
One may wonder if the multi-directional response can be represented by the
gradients. Indeed, for differentiable functions, the directional derivatives
along some directions have an equivalent relationship with the gradients.
However, for tensors of visual data, this relationship no longer holds as the
differentiability is violated. Based on this fact, we here propose a definition
of the responses of a matrix to m-directional derivative-like filters as follows:

Definition 1. (RMDF: Response to Multi-directional Derivative-like Filter-
s.) The response of a matrix to m derivative-like filters in θm directions with
weights βm is defined as R(A,β ) ∈ RD1D2×m :=[

β1 vec( fθ1 ∗A)
∣∣β2 vec( fθ2 ∗A)

∣∣ · · · ∣∣βm vec( fθm ∗A)
]
,

where β = [β1,β2, · · · ,βm] with ∀ j ∈ [1, ...,m] β j ≥ 0 and ∑
m
j=1 β j = 1.

Another drawback of the traditional TV is its homogeneity to all elements
in tensors, which favors piecewise constant solutions. This property would
result in oversmoothing high-frequency signals and introducing staircase ef-
fects. Intuitively, in visual data, the high-frequency signals should be p-
reserved to maintain the perceptual details, while the low-frequency ones
could be smoothed to suppress noises. This intuition inspires us to differ-
ently treat the variations. Considering both the multi-directionality and the
inhomogeneity gives the definition of generalized tensor TV as:

Definition 2. (GTV: Generalized Tensor Total Variation Norm.) The GTV
norm of an n-order tensor A ∈ RD1×···×Dn is:

‖A‖GTV :=
n

∑
k=1

α
k‖W k�R(A[k],β

k)‖p,

where α = [α1, ...,αk, ...,αn] is the non-negative coefficient balancing the
importance of k-mode matrices and satisfying ∑

n
k=1 αk = 1, and p could be

either 1 or 2,1 corresponding to the anisotropic total variation (`1) and the
isotropic one (`2,1), respectively. In addition, W k ∈ R∏

n
i=1 Di×m acts as the

non-negative weight matrix, the elements of which correspond to those of
R(A[k],β

k).

It is apparent that GTV satisfies the properties that a norm should do,
and the traditional TV norm is a specific case of GTV. With the definition of
GTV, the visual data recovery problem can be naturally formulated as:

argmin
T ,N

n

∑
k=1

α
k‖W k�R(T [k],β

k)‖p +λΨ(N )

s. t. PΩ(O) = PΩ(T +N ).

(1)

To solve the associated optimization problem, we design an effective and
efficient algorithm based on ALM-ADM strategy [3, 4]. The detailed algo-
rithm and some important properties can be found in the paper.
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STDC: 20.20/.7481 HaLRTC: 20.86/.7843 GTV: 22.62/.8906 

STDC: 17.37/.6829 HaLRTC: 17.80/.7060 GTV: 19.57/.8412 

STDC: 14.96/.6102 HaLRTC: 15.19/.5943 GTV: 16.94/.7574 

Figure 1: Top row shows the results with 30% information missed. Mid-
dle and Bottom correspond to those with 50% and 70% elements missed,
respectively. From Left to Right: input frames, recoverd results by STDC,
Ha LRTC and GTV, respectively.

Figure 2: Left: Original image. Mid-Left: Polluted image by 40% Salt
& Pepper noise (PSNR/SSIM: 8.71dB/0.1488). Rest: Recovered results by
traditional TV (27.86dB/0.9144) and GTV (29.08dB/0.9234), respectively.

The proposed GTV can be widely applied to many visual data restora-
tion tasks, such as visual data completion, denoising, and inpainting. We
provide some experimental results here to show the advantages of GTV
compared with the state-of-the-arts. Figure 1 shows an example on visu-
al data completion, in terms of PSNR and SSIM, our method significantly
outperforms STDC [2] and HaLRTC [5]. Figure 2 provides an example on
image denoising to demonstrate the superior performance of GTV over the
traditional TV [1, 6]. The middle-right picture in Fig. 2 is the best possible
result of the traditional TV by tuning λ ∈ {0.1,0.2, ...,1.0}, while the right
is automatically obtained by our method.
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