
Scene Labeling with LSTM Recurrent Neural Networks

Wonmin Byeon 1 2, Thomas M. Breuel 1, Federico Raue 1 2, Marcus Liwicki 1 2

1 University of Kaiserslautern, Germany. 2 German Research Center for Artificial Intelligence (DFKI), Germany

N

Input I k

LSTM LSTM

LSTM LSTM

3xNxN3xNxN

3xNxN 3xNxN

2D LSTM Layer

3

Nwi

S

T

3

LSTM

M

LSTM

LSTMLSTM

….

Convolutional
Sum

 ∑ ∑

1

1

1

1

Pr (L∣w i)
Output

Softmax

Hidden Layer

…. sky tree

road grass

foregroundmountainwater building

(S = 10) x (4 directions) T = 20 (M = 50) x (4 directions)
L = 8 (the number of class)

Figure 1: 2D LSTM network architecture. A input image Ik is divided into non-overlapping windows wi (a grid) sized N×N. Each window with RGB channels (3×N×N) are fed into four separate
LSTM memory blocks with size S. Each LSTM block is connected to its surrounding directions, i.e., left-top, left-bottom, right-top, and right-bottom. The output of each LSTM block is convoluted
separately with size T , then summed and squashed by the Hyperbolic tangent (tanh). From this step, all the information from the different directions is accumulated and passed to the next layer. At
the last layer, the outputs of the final LSTM blocks are summed up and sent to the softmax layer. Finally, the networks output the class probabilities for each input window. The bottom images are
corresponding outputs for each layer.

Introduction
The scene labeling task consists of partitioning the meaningful regions of
an image and labeling pixels with their regions. This paper addresses the
problem of pixel-level segmentation and classification of scene images with
a entirely learning-based approach using Long Short Term Memory (LSTM)
recurrent neural networks, which are commonly used for sequence classi-
fication. We investigate two-dimensional (2D) LSTM networks for natural
scene images taking into account the complex spatial dependencies of la-
bels. Many prior methods generally have required separate classification
and image segmentation stages and/or pre- and post-processing. In our ap-
proach, classification, segmentation, and context integration are all carried
out by 2D LSTM networks, allowing texture and spatial model parameters
to be learned within a single model. The networks efficiently capture local
and global contextual information over raw RGB values and adapt well for
complex scene images.
The networks are divided into the three main layers: Input layer, hidden
layer, and output layer. The hidden layer consists of 2D LSTM layer and
feed-forward layer, and is stacked as deep networks. The architecture of
2D LSTM networks is illustrated in Figure 1. The input images was split
into grids, then pass to the LSTM subnets which allow to easily memorize
the context information. Each LSTM memory block scans on all directions
(left-top, left-bottom, right-top, and right-bottom), then the outputs are com-
bined together in feed-forward layer. Finally, the outputs from the last hid-
den layer is normalized with the softmax function. As an objective function,
we apply the negative log probability (i.e., cross entropy error function) with
Probabilistic target coding scheme.

Experiments
Table 1 compares the performance of LSTM networks with current state-
of-the-art methods on the Stanford Background dataset and the SIFT Flow
dataset, and selected examples of labeling results from the Stanford dataset
are shown in Figure 2.
Our approach, which has a much lower computational complexity than
prior methods, achieves state-of-the-art performance over the Stanford Back-
ground and the SIFT Flow datasets. In fact, if no pre- or post-processing
is applied, LSTM networks outperform other state-of-the-art approaches.
Hence, only with a single-core Central Processing Unit (CPU), the running
time of our approach is equivalent or better than the compared state-of-the-
art approaches which use a Graphics Processing Unit (GPU).

Figure 2: The results of scene labeling on the Stanford Background dataset. First row: input
image; Second row: ground-truth; Third row: predicted image. Colors on images indicate labels
— identical colors on ground-truth and predicted images indicate a correct labeling

Table 1: Pixel and averaged per class accuracy comparison on the Stanford Background dataset
and the SIFT Flow dataset (in %). B and UB indicate balancing and unbalancing of class fre-
quency of input images, respectively. Balancing the class frequencies would improve the class-
average accuracy, but is not realistic for scene labeling in general. The performance of recurrent
CNNs (RCNNs) reported here is from two instances. CT indicates the averaged computing time
per image.

Method Pixel Acc. Class Acc. CT (sec.) # params
Stanford

Single-scale ConvNet [1] 66 56.5 (B) 0.35 (GPU) -
ACNNs [3] 71.97 66.16 (B) - 701K
RCNNs [4] 76.2 67.2 (UB) 1.1 (GPU) -
LSTM networks (window 5×5) 77.78 69.60 (UB) 1.4 (CPU) 173K
LSTM networks (window 3×3) 78.56 68.79 (UB) 3.7 (CPU) 155K

SIFT Flow
Multi-scale ConvNet [1] 67.9 45.9 (B) - -
ACNNs [3] 49.39 44.54 (UB) - 1225K
RCNNs [4] 65.5 20.8 (UB) - -
LSTM networks (window 5×5) 68.74 22.59 (UB) 1.2 (CPU) 178K
LSTM networks (window 3×3) 70.11 20.90 (UB) 3.1 (CPU) 168K

[1] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene
labeling. In PAMI, 2013.

[2] S Hochreiter and J Schmidhuber. Long short-term memory. Neural Computation, 1997.
[3] Taygun Kekeç, Rémi Emonet, Elisa Fromont, Alain Trémeau, Christian Wolf, and France

Saint-Etienne. Contextually constrained deep networks for scene labeling. In In BMVC,
2014.

[4] Pedro Pinheiro and Ronan Collobert. Recurrent convolutional neural networks for scene la-
beling. In In ICML, 2014. URL http://jmlr.org/proceedings/papers/v32/
pinheiro14.pdf.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

http://jmlr.org/proceedings/papers/v32/pinheiro14.pdf
http://jmlr.org/proceedings/papers/v32/pinheiro14.pdf
http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

