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Motivation. The problem of learning good metrics is of great theoretical
and practical interest in information processing [4]. Applications include
clustering, image annotation, retrieval, classification, among others. The
drawback of current metric learning systems is that they require human an-
notations (e.g. full category labels or pairwise constraints), which are ex-
pensive to acquire.

This paper learns good metrics for efficient vision applications without
using human annotation. We draw inspiration from transfer learning and
propose a novel approach, coined Metric Imitation (MI). MI takes state-
of-the-art, off-the-shelf, but computationally expensive features (e.g. the
CNN feature [2], Object Bank (OB) [5], and Sift-llc [7]) as source features
(SFs) and cheap features (e.g. LBP and GIST) as target features (TFs) to
learn good metrics for the TFs by imitating the metrics computed over the
SFs. MI is a general framework and can at least be applied to: 1) creating
efficient solutions to good metrics when SFs are more powerful than TFs,
but are computationally more expensive and/or more memory-hungry; and
2) creating good metrics for TFs when SFs contain privileged information
but are not available at testing time.

Method. MI comes out of a marriage of advances in metric learning
and transfer learning. On the one hand, metric learning now is able to learn
good metrics over general features for specific tasks [4], with human su-
pervision. On the other hand, transfer learning can now transfer knowledge
(often classifiers) learned in one domain of interest to another, for which
no further human supervision is necessary. Observing both developments
then begs the question whether metrics can be computed over one feature
(i.e. SFs) to then be transferred to the domain of another feature (i.e. TFs)
and automatically supervise the metric learning process there. In this paper,
we demonstrate this for several vision tasks. The main advantages of the
method are: 1) it performs in an unsupervised manner, i.e. without human
annotation; 2) it can be efficient as only TFs are needed during test time;
3) it can inject domain knowledge carried through SFs to TFs for metric
computation.

The metric is learned in the framework of Mahalanobis distance learn-
ing, i.e. a linear mapping function of TFs is learned and applied prior to
performing the Euclidean distance metric. Specifically, the method works
as follows: 1) it translates the properties of metrics computed over SFs into
manifold geometries; 2) it transfers the manifold to the domain of the TFs
as view-independent properties; and 3) it learns a mapping function of the
TFs so that the transferred manifold is approximated as well as possible in
the transformed space. By doing this, the neighborhood properties of data
computed over the SFs are preserved in the transformed space of TFs, i.e
close neighbors are still close. The reason for ensuring this is that neighbors
search is enormously important in many vision applications, such as clus-
tering, retrieval, and classification. The local properties (relations) of the
manifold can be quantified in a variety of ways, and we used LLE [6] and
LapEigen (Lap) [1] to encode local linearity and local pairwise distance, re-
spectively. With the transferred manifold, the mapping function is learned
by solving a generalized eigenvector problem, by following [3].

Experiments. In accordance with our previous remarks, the usability
of MI is validated in two scenarios of metric learning: 1) compute good
solutions for cheap features; and 2) transfer privileged information to tar-
get domain. For the first scenario, MI was tested on instance-based object
retrieval using the INRIA Holiday dataset and the UKbench dataset, and
on category-based image retrieval and image clustering using four other
datasets: Scene-15 (S-15), CUReT-61 (C-61), Caltech-101 (C-101), and
Event-8 (E-8). Three sophisticated, high-dimensional features were used
as the SFs: OB [5], Sift-llc [7], and the CNN feature [2], and three general,
cheap features used as the TFs: GIST, LBP, and PHOG. Extensive experi-
ments show that MI consistently and significantly outperforms the metrics
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Figure 1: Examples with an upscaling factor ×4. Best seen on the screen.
Images are obtained from the Internet.
Table 1: Purity of clustering by Metric Imitation (MI), where 50% of the
images are used for training and the rest for testing.

TFs MI SFs MI SFs MI SFs
LBP LLE Lap SIFT-llc LLE Lap CNN LLE Lap OB

S-15 0.36 0.40 0.46 0.49 0.47 0.48 0.69 0.42 0.48 0.54
C-61 0.33 0.44 0.46 0.39 0.33 0.41 0.60 0.31 0.37 0.44

C-101 0.32 0.34 0.34 0.51 0.37 0.36 0.68 0.37 0.35 0.52
E-8 0.39 0.46 0.46 0.57 0.47 0.47 0.82 0.48 0.48 0.46

Table 2: MAP of category-based image retrieval by MI with the concatena-
tion of LBP, GIST and PHOG (LGP) used as the TFs. 50% images are used
for training and the rest for testing. Recall is set to 0.1.

TFs MI SFs MI SFs MI SFs
LGP LLE Lap SIFT-llc LLE Lap CNN LLE Lap OB

S-15 0.52 0.60 0.61 0.60 0.64 0.64 0.72 0.62 0.63 0.65
C-61 0.84 0.95 0.93 0.90 0.94 0.96 0.95 0.92 0.90 0.91

C-101 0.42 0.48 0.46 0.57 0.51 0.51 0.79 0.48 0.48 0.59
E-8 0.52 0.63 0.63 0.70 0.65 0.64 0.88 0.60 0.56 0.58

computed directly over the same TFs, while getting close to the metrics from
the computationally more expensive SFs in some cases. See the results in
Table 1 and Table 2. For the second scenario, MI was evaluated on example-
based image super-resolution. Patches of high-resolution images, which are
not available at testing time, are used as SFs and patches of low-resolution
images as TFs. Experiments show that MI is able to create an efficient so-
lution to k-NN-based methods, without sacrificing any performance relative
to the state-of-the-art. See Fig. 1 for examples.
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