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In this paper, we present a multi-instance object segmentation algorithm to
tackle occlusions. As an object is split into two parts by an occluder, it
is nearly impossible to group the two separate regions into an instance by
purely bottom-up schemes. To address this problem, we propose to incor-
porate top-down category specific reasoning and shape prediction through
exemplars into an intuitive energy minimization framework.

We start by finding the occluding regions, i.e., the overlap between two
instances. For example, the overlap between the person and motorbike gives
the occluding region, i.e., leg of the person, in Figure 1. To find these re-
gions, we need to parse and categorize the two overlapping instances. Re-
cently, Hariharan et al. [3] propose a simultaneous detection and segmenta-
tion (SDS) algorithm that shows a significant improvement in the segmenta-
tion classification task. This classification capability provides us a powerful
top-down category specific reasoning to tackle occlusions. Then, we use
categorized segmentation hypotheses obtained by SDS to infer occluding
regions by checking if two of the top-scoring categorized segmentation pro-
posals are overlapped. If they overlap, we record this occluding region into
the occluding region set.

On the other hand, the classification capability are used to generate cate-
gory specific likelihood maps and to find the corresponding category specific
exemplar sets to better estimate the shape of objects. These category spe-
cific likelihood maps are used to indicate the location of objects in different
category in a probabilistic manner. As the bottom-up segmentations tend
to undershoot (e.g., missing parts of an object) and overshoot (e.g., con-
taining background clutter), we enhance these segments through the non-
parametric, data-driven shape predictor based on the chamfer matching [4].
The overview of the exemplar-based shape prediction is shown in Figure 2.

The inferred occluded regions, shape predictions and class-specific like-
lihood maps are formulated into an energy minimization framework to ob-
tain the desired segmentation candidates (e.g., Figure 1(d)). Let yp denote
the label of a pixel p in an image and y denotes a vector of all yp. The energy
function given the foreground-specific appearance model Ai is defined as

E(y;Ai) = ∑
p∈P

Up(yp;Ai)+ ∑
p,q∈N

Vp,q(yp,yq) , (1)

where P denotes all pixels in an image, N denotes pairs of adjacent pixels,
Up(·) is the unary term and Vp ,q(·) is the pairwise term. Our unary term
Up(·) is the linear combination of several terms and is written as

Up(yp;Ai) = −αAi logp(yp;cp,Ai)−αO logp(yp;O)

−αPc j
logp(yp;Pc j ) . (2)

For the pairwise term Vp,q(yp,yq), we follow the definition as Grabcut [5].
The first potential p(yp;cp,Ai) evaluates how likely a pixel of color cp

is to take label yp based on a foreground-specific appearance model Ai. As
in [5], an appearance model Ai consists of two Gaussian mixture models,
foreground and background. Each foreground-specific appearance model
Ai is initialized using a foreground mask fi.

The second potential p(yp;O) accounts for the occlusion handling in
the proposed energy minimization framework where O denotes the occlud-
ing set. Given a foreground mask fi and its score sc j

fi
in class c j , we check

the corresponding score of the region fi\O∗, which is removing one of the
possible occluding region O∗ in O from the foreground mask fi. When
sc j

fi\O∗ > sc j
fi

, that means the pixel p in the occluding region O∗ is discour-
aged to be associated with the foreground mask fi. In this case, we penalize
the energy of the occluding regions by adding the penalization when the
pixel location p is foreground. When the pixel location p is background, the
energy of the occluding regions is subtracted with the penalization.
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Figure 1: Segmentation quality comparison. Given an image (a), our
method (d) can handle occlusions caused by the leg of the person while
MCG [1] (c) includes the leg of the person as part of the motorbike. More-
over, the segment in (c) is classified as a bicycle using class-specific classi-
fiers whereas our segment can be classified correctly as a motorbike.
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Figure 2: Overview of the exemplar-based shape predictor. This figure
shows an example that the shape predictor uses the top-down class-specific
shape information to remove the overshooting on the back of the horse.

The third potential p(yp;Pc j ) corresponds to one of the class-specific
likelihood map Pc j . Because of the probabilistic nature of class-specific

likelihood map Pc j , we set the third potential as p(yp;Pc j )=Pyp
c j (1−P

1−yp
c j ).

Finally, we iteratively minimize the energy function (1) as in [5]. Parame-
ters of the foreground-specific appearance model will keep updating in each
iteration until the energy function converges.

The implementation and evaluation of the proposed algorithm is de-
scribed in the paper in detail. We demonstrate the effectiveness of the pro-
posed algorithm by comparing with SDS on the challenging PASCAL VOC
segmentation dataset [2]. The experimental results show that the proposed
algorithm achieves favorable performance. Moreover, the results suggest
that high quality segmentations improve the detection accuracy significantly.
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