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Unsupervised video object segmentation methods aim at automatically ex-
tracting the object from the whole video. Such segmentation has shown to
benefit many specific visual tasks, such as video summarization and com-
pression. Several methods [1, 3, 5] explored the notion of what a foreground
object should look like in video data. These approaches generate consider-
able object proposals in every frame and transform the task of video object
segmentation into an object region selection problem. More specifically, a
clustering process was introduced for finding objects by [1], a constrained
maximum weight cliques technique to model the selection process was pro-
posed by [3], and a layered directed acyclic graph based framework was
presented by [5]. However, these proposal based techniques have high com-
putational complexity, and their dependency on the large number of propos-
als leads to much difficulty and complexity of the selection process.

Our goal is to segment the foreground objects from the background in
all frames of a given video sequence automatically. Our method is based on
the proposed visual saliency detection technique that incorporates several
visual cues such as motion boundary, edge and color. We consider two dis-
criminative visual features: spatial edges and temporal motion boundaries
as indicators of foreground object locations. By imposing motion continu-
ity, we establish a dynamic location model for each frame. Finally, the spa-
tiotemporal saliency maps, appearance models and dynamic location models
are combined into an energy minimization framework to attain both spatially
and temporally coherent object segmentation (Fig. 1).

Given an input video sequence F = {F1,F2, · · ·}, we compute an edge
probability map Ek

c (x
k
i ) corresponding to k-th frame Fk at pixel xk

i using [2].
Let V k be the optical flow field of frame Fk, we then compute the gradi-
ent magnitude Ek

o of the optical flow field V k as Ek
o = ∥∇V k∥. Let Yk =

{Y k
1 ,Y

k
2 , · · ·} be the superpixel set of frame Fk. Given the pixel edge map

Ek
c , the edge probability of each superpixel Y k

n is computed as the average
value of the pixels with ten largest edge probabilities within Y k

n . This gen-
erates a superpixel edge mapÊk

c . Similarly, we compute a superpixel optical
flow magnitude map Êk

o using Ek
o . Then a spatiotemporal edge probability

map Ek is generated as:
Ek = Êk

c · Êk
o . (1)

Intra-frame graph construction For frame Fk, we construct an undi-
rected weighted graph Gk = {Vk,Ek} with superpixels Yk as nodes Vk and
the links between pairs of nodes as edges Ek. The weight wk

mn of the edge
ek

mn ∈ Ek between adjacent superpixels Y k
m and Y k

n is defined as:

ek
mn = ∥Ek(Y k

m)−Ek(Y k
n )∥, (2)

where Ek(Y k
m) and Ek(Y k

n ) correspond to the spatiotemporal boundary prob-
ability of superpixels Y k

m and Y k
n , separately. Based on the graph structure,

we derive an |Vk| × |Vk| weight matrix W k, where |Vk| is the number of
nodes in Vk. The (m, n)th element of W k is: W k(m,n) = ek

mn. For each
superpixel Y k

n , the probability Pk
n for foreground is computed by the shortest

geodesic distance to the image boundaries using

Pk
n = min

T∈ Tk
dgeo(Y k

n ,T,Gk), (3)

where Tk indicate the superpixels along the four boundaries of frame Fk.
The geodesic distance dgeo(v1,v2,Gk) between any two superpixels v1,v2 ∈
Vk in graph Gk is defined as the accumulated edge weights along their short-
est path on graph Gk:

dgeo(v1,v2,Gk) = min
Cv1 ,v2

∑
p=0,1

|W k ·Ċv1,v2(p)|, (4)

where Cv1,v2(p) is a path connecting the nodes v1,v2 (for p = 0 and p = 1).

*Corresponding author: Jianbing Shen (shenjianbing@bit.edu.cn). This is an extended ab-
stract. The full paper is available at the Computer Vision Foundation webpage.

Figure 1: Overview. Input frame is over-segmented into superpixels and
a spatiotemporal edge map is produced by the combination of static edge
probability map and optical flow gradient magnitude.

Inter-frame graph construction For each pair of subsequent frame Fk

and Fk+1, an undirected weighted graph G′k = {V ′k,E ′k} is constructed.
The nodes V ′k consist of all the superpixels Yk of frame Fk and all the su-
perpixels Yk+1 of frame Fk+1. For each frame, a self-adaptive threshold is
used to decompose frame Fk into background regions Bk and object-like re-
gions Uk through the object probability map Pk. This threshold σ k for frame
Fk is computed by σ k = µ(Pk), where µ(·) computes the mean probability
of all pixels within frame Fk by probability map Pk. Additionally, the back-
ground information of previous frame offers valuable prior. Therefore, we
define the background regions Bk of k-th frame as:

Bk = {Y k
n |Pk

n ≤ σ k}∪{Y k
n |Y k

n is temporally connected to Bk−1},

Uk = Yk −Bk,
(5)

We formulate video object segmentation as a pixel labeling problem
with two labels (foreground and background). Each pixel xk

i ∈ Xk can take
a label lk

i ∈ {0,1}, where 0 corresponds to background and 1 corresponds
to foreground. A labelling L = {lk

i }k,i of pixels from all frames represents a
segmentation of the video. Similarly to other segmentation works [1, 4], we
define an energy function for labeling L of all the pixels:

F(L) =∑
k,i

Uk
i (l

k
i )+λ1 ∑

k,i
Ak

i (l
k
i )+λ2 ∑

k,i
Lk

i (l
k
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+λ3 ∑
(i, j)∈Ns

Vk
i j(l

k
i , l

k
j )+λ4 ∑

(i, j)∈Nt

Wk
i j(l

k
i , l

k+1
j ),

(6)

where spatial pixel neighborhood Ns consists of eight spatially neighboring
pixels within one frame, temporal neighborhood Nt consists of the forward-
backward nine neighbors in adjacent frames, and i, j index the pixels.

Our source code will be publicly available online .
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