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We present an approach for correcting the bias in 3D reconstruction of points
imaged by a calibrated stereo rig. Our analysis is based on the observation
that, due to quantization error, a 3D point reconstructed by triangulation es-
sentially represents an entire region in space. The true location of the world
point that generated the triangulated point could be anywhere in this region.
We argue that the reconstructed point, if it is to represent this region in space
without bias, should be located at the centroid of this region, which is not
what has been done in the literature. We derive the exact geometry of these
regions in space, which we call 3D cells, and we show how they can be
viewed as uniform distributions of possible pre-images of the pair of cor-
responding pixels. By assuming a uniform distribution of points in 3D, as
opposed to a uniform distribution of the projections of these 3D points on
the images, we arrive at a fast and exact computation of the triangulation
bias in each cell. In addition, we derive the exact covariance matrices of the
3D cells. We validate our approach in a variety of simulations ranging from
3D reconstruction to camera localization and relative motion estimation. In
all cases, we are able to demonstrate a marked improvement compared to
conventional techniques for small disparity values, for which bias is signifi-
cant and the required corrections are large.

Pixelation, or quantization, error causes digital cameras to map distinct
points from the continuous world to the same pixel in the image. In the
case of stereo vision, sets of points in the world, which we hereafter refer
to as 3D cells, are mapped to discrete pairs of pixels in the two cameras.
Since all points in a cell are indistinguishable after the projection, typically
they are all mapped to the same 3D point after reconstruction. In classical
stereo vision the reconstructed point is the intersection of two rays that pass
through the two camera centers and the two pixel centers. It represents
an entire region formed by the intersection of two infinitely long pyramids
created by the camera centers and the pixels, shown in Fig. 1(a). The sides
of each pyramid are formed by the planes defined by the camera centers and
edges of the pixels. 3D cells are larger, more elongated and asymmetric the
further away from the cameras they are. This means that points far from the
cameras are often subject to large error.

Assuming that points in the 3D cell are uniformly distributed in space,
then the expected value of the reconstructed point is the first moment, or the
centroid, of the 3D cell. Conventional stereo vision, however, does not use
the centroid as the reconstructed point, causing systematic error. Several
authors [1, 5, 7] have reported the bias in long range stereo vision, but to the
best of our knowledge, the treatment and correction to the systematic error
proposed here is novel. Our approach differs from previous work in that it
is an exact and computationally simple solution that is able to remove the
bias. An illustration of the proposed solution can be seen in Fig. 1(b) which
shows the intersection of the rays (dashed lines) and the centroid of the 3D
cell (dark dot). The distance between the two is the bias of conventional
reconstruction. The bias can be computed as shown in the paper and the
coordinates of the reconstructed point can be corrected.

After deriving the correction, we demonstrate that it completely re-
moves the bias in three types of simulation. The first type of simulation
examines the errors in 3D reconstruction by generating a set of 3D points,
projecting them on the images and reconstructing them using the conven-
tional and the proposed approach. In the second type of simulation, we
localize a pair of cameras that observe a set of known 3D landmarks using
Horn’s absolute orientation algorithm [3]. In this case, the 3D coordinates of
the landmarks are known, but the reconstructed coordinates of the observed
landmarks are corrupted by quantization noise due to pixelation. In the third
type of simulation, the relative motion of a camera pair is estimated based
on two observations of an unknown set of 3D landmarks. The cameras take
a pair of images of the landmarks, move to a new location and take a second
pair of images. Motion is estimated by reconstructing the observed land-
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(a) Ilustration of a 3D cell

(b) Cross-section of the cell

Figure 1: Illustrations of quantization error in stereo vision. (a) a 3D cell
created by the intersection of the viewing cones (pyramids) emanating from
corresponding pixels in the left and right camera. (b) Cross-section of the
3D cell. The dark dot is the centroid of the cell and should be used as the
reconstructed point, instead of the intersection of the rays that is currently
used.

marks and applying Horn’s algorithm on the two sets of 3D points. In all
cases, bias is observed for conventional reconstruction while it is entirely
removed after the proposed correction.

The second contribution of this paper is a novel way to derive the co-
variance matrix of a reconstructed point by computing the second moments
of a uniform distribution in the corresponding 3D cell. This estimate is exact
and more accurate than common approximations that propagate uncertainty
from the image plane to the reconstructed points under Gaussian assump-
tions [4]. Note that higher order moments of these distributions exist, but
we ignore them in this work. We propose a test for the validity of our new
covariance estimation method and show that it is indeed superior to conven-
tional covariance propagation [4].

Our findings are directly applicable to stereo matching algorithms that
treat disparity as a discrete variable, including most of the top perform-
ing methods participating in the evaluations hosted by Middlebury [6] and
KITTI [2] that use Markov Random Fields or Semi-Global Matching for
optimization. We leave the analysis of matching methods that treat disparity
as a continuous variable by fitting planes to image patches or by relying on
variational techniques, for future work.
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