
Simultaneous Feature Learning and Hash Coding with Deep Neural Networks

Hanjiang Lai1, Yan Pan2, Ye Liu3, Shuicheng Yan1

1Department of Electronic and Computer Engineering, National University of Singapore, Singapore. 2School of Software, Sun Yan-Sen University, China.
3School of Information Science and Technology, Sun Yan-Sen University, China.

In this paper, we focus on learning-based hashing, an emerging stream of
hash methods that learn similarity-preserving hash functions to encode input
data points (e.g., images) into binary codes.

Many learning-based hashing methods have been proposed, e.g., [3, 5].
The existing learning-based hashing methods can be categorized into unsu-
pervised and supervised methods, based on whether supervised information
(e.g., similarities or dissimilarities on data points) is involved. Compact bit-
wise representations are advantageous for improving the efficiency in both
storage and search speed, particularly in big data applications. Compared
to unsupervised methods, supervised methods usually embed the input data
points into compact hash codes with fewer bits, with the help of supervised
information.

In the pipelines of most existing hashing methods for images, each in-
put image is firstly represented by a vector of traditional hand-crafted visual
descriptors (e.g., GIST, HOG), followed by separate projection and quanti-
zation steps to encode this vector into a binary code. However, such fixed
hand-crafted visual features may not be optimally compatible with the cod-
ing process. In other words, a pair of semantically similar/dissimilar images
may not have feature vectors with relatively small/large Euclidean distance.
Ideally, it is expected that an image feature representation can sufficiently
preserve the image similarities, which can be learned during the hash learn-
ing process. Very recently, Xia et al. [5] proposed CNNH, a supervised
hashing method in which the learning process is decomposed into a stage
of learning approximate hash codes from the supervised information, fol-
lowed by a stage of simultaneously learning hash functions and image rep-
resentations based on the learned approximate hash codes. However, in this
two-stage method, the learned approximate hash codes are used to guide
the learning of the image representation, but the learned image representa-
tion cannot give feedback for learning better approximate hash codes. This
one-way interaction thus still has limitations.

In this paper, we propose a “one-stage” supervised hashing method via
a deep architecture that maps input images to binary codes. As shown
in Figure , the proposed deep architecture has three building blocks: 1)
shared stacked convolution layers to capture a useful image representation,
2) divide-and-encode modules to divide intermediate image features into
multiple branches, with each branch corresponding to one hash bit, (3) a
triplet ranking loss [4] designed to preserve relative similarities.

Triplet Ranking Loss and Optimization In the proposed deep archi-
tecture, we propose to use a variant of the triplet ranking loss in [4] to
preserve the relative similarities of images. Specifically, given the training
triplets of images in the form of (I, I+, I−) in which I is more similar to I+

than to I−, the goal is to find a mapping F(.) such that the binary code F(I)
is closer to F(I+) than to F(I−). Accordingly, the triplet ranking hinge loss
is defined by

`triplet(F(I),F(I+),F(I−))

=max(0, ||F(I)−F(I+)||22−||F(I)−F(I−)||22 +1)

s.t. F(I), F(I+), F(I−) ∈ [0,1]q.

(1)

Shared Sub-Network with Stacked Convolution Layers With this
modified triplet ranking loss function (1), the input to the proposed deep
architecture are triplets of images, i.e., {(Ii, I+i , I−i)}n

i=1, in which Ii is more
similar to I+i than to I−i (i = 1,2, ...n). As shown in Figure , we propose
to use a shared sub-network with a stack of convolution layers to automat-
ically learn a unified representation of the input images. Through this sub-
network, an input triplet (I, I+, I−) is encoded to a triplet of intermediate
image features (x,x+,x−), where x, x+, x− are vectors with the same di-
mension.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

shared sub-network with stacked convolution layers

triplet
ranking
loss
function

queries

similar images

dissimilar images

triplets of images

…

1x1 conv ave pooling

piecewise layers

divide-and-encode module

slice layers

…

…
…

…

…

…

…

…

…
…

…

…

…

…

…

…
…

…

…

…

…

Figure 1: Overview of the proposed deep architecture for hashing. The in-
put to the proposed architecture is in the form of triplets, i.e., (I, I+, I−) with
a query image I being more similar to an image I+ than to another image I−.
Through the proposed architecture, the image triplets are first encoded into
a triplet of image feature vectors by a shared stack of multiple convolution
layers. Then, each image feature vector in the triplet is converted to a hash
code by a divide-and-encode module. After that, these hash codes are used
in a triplet ranking loss that aims to preserve relative similarities on images.

In this sub-network, we adopt the architecture of Network in Network [2]
as our basic framework, where we insert convolution layers with 1× 1 fil-
ters after some convolution layers with filters of a larger receptive field.
These 1× 1 convolution filters can be regarded as a linear transformation
of their input channels (followed by rectification non-linearity). As sug-
gested in [2], we use an average-pooling layer as the output layer of this
sub-network, to replace the fully-connected layer(s) used in traditional ar-
chitectures (e.g., [1]).

Divide-and-Encode Module After obtaining intermediate image fea-
tures from the shared sub-network with stacked convolution layers, we pro-
pose a divide-and-encode module to map these image features to approxi-
mate hash codes. We assume each target hash code has q bits. Then the
outputs of the shared sub-network are designed to be 50q. The proposed
divide-and-encode module firstly divides the input intermediate features into
q slices with equal length. Then each slice is mapped to one dimension by
a fully-connected layer, followed by a sigmoid activation function that re-
stricts the output value in the range [0,1], and a piece-wise threshold func-
tion to encourage the output of binary hash bits. After that, the q output hash
bits are concatenated to be a q-bit (approximate) code.

[1] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classifi-
cation with deep convolutional neural networks. In Proceedings of Ad-
vances in Neural Information Processing Systems, pages 1106–1114,
2012.

[2] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. In Pro-
ceedings of the International Conference on Learning Representations,
2014.

[3] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang.
Supervised hashing with kernels. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 2074–2081,
2012.

[4] Mohammad Norouzi, David J. Fleet, and Ruslan Salakhutdinov. Ham-
ming distance metric learning. In Proceedings of the Advances in Neu-
ral Information Processing Systems, pages 1–9, 2012.

[5] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan.
Supervised hashing for image retrieval via image representation learn-
ing. In Proceedings of the AAAI Conference on Artificial Intellignece,
pages 2156–2162, 2014.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

