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Blind deconvolution is a severely ill-conditioned problem, which under max-
imum a posterior (MAP) framework involves blur kernel estimation and
non-blind deconvolution. For blur kernel estimation, sharp edge predic-
tion and carefully designed image priors are vital to the success of MAP,
guarding the solution free from the trivial delta kernel solution [3]. Edge
prediction based approaches usually involve some heuristic and engineered
methods, e.g., shock and bilateral filters [1], to restore salient edges explic-
itly. Image prior-based approaches generally deploy novel regularizers, e.g.,
l1/l2 [2], for implicit edge selection.

Recent researches also suggest that parameters for edge prediction and
image regularization should be dynamically tuned during the iterations. For
edge prediction-based approaches, strong edges are selected for coarse k-
ernel estimation in the first a few iterations, and subsequently more details
are added to further refine the estimated kernel [1]. Under the MAP frame-
work, the regularization parameter λ is set small to preserve strong edges
while suppressing detailed textures in the first a few iterations, and gradually
tuned along with the iteration to produce accurate kernel [2].

Rather than the fixed regulariers used in previous work, in this paper
we propose iteration-wise priors to adaptively select appropriate edges to
facilitate estimate kernel k. By modeling the image gradients d as Laplacian
distribution Pr(d) ∝ e−‖d‖

p
p/λ , the proposed model is formulated as

min
d,k

λ (t)

2σ 2
n
‖k⊗d−∇y‖2 +‖d‖p(t)

p(t) +µ ‖k‖0.5
0.5

s.t. ∇hdv = ∇vdh,∑i ki = 1,ki ≥ 0,∀i.
(1)

where the parameters {λ (t), p(t)} for iteration t is uniquely set.
To avoid heavy handcrafted parameter tuning, we propose a princi-

pled discriminative approach to learn the parameters from synthetic training
dataset. Denote D by a set of synthetic images {(dgt

i ,kgt
i ,∇yi)}N

i=1, where
dgt

i denotes the gradient of the i-th clear image, kgt
i denotes the i-th blur k-

ernel, and ∇yi denotes the gradient of the i-th blurry image. For estimating
θθθ
(t) =

{
λ (t), p(t)

}
, we adopt the weighted mean square error (MSE) loss

function defined on D,
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N
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where | • | counts the entries of the vector for the normalization of image
and kernel sizes, and α denotes the trade-off parameter. Due to the special-
ly designed one-step augmented Lagrangian solutions to kernel estimation
and non-blind deconvolution, the optimal parameters for each iteration can
be searched via simple gradient descent method, Interestingly, thanks to the
generalized shrinkage / threshold (GST) operator [7] for non-convex lp opti-
mization, the case p < 0 is allowed, which magnified the salient edges while
suppressing harmful detailed textures, so that the coarse shape of blur kernel
can be rapidly estimated.Input
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Figure 1: Illustration of intermediate kernel estimation with learned p val-
ues.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

The iteration-wise parameters are learned from Levin et al.’s dataset [3].
As shown in Fig. 1, we observe that the small λ and p values benefit the
rough kernel estimation, and with the values increasing the estimated kernel
is refined in details. Also at beginning, p< 0 magnified the preserved salient
edges, significantly contributing to rapid kernel estimation. The learned pa-
rameters can be directly applied to other synthetic and real blurry images.
In our experiments, the quantitative evaluation is conducted on Levin et al.’s
dataset [3] and Sun et al.’s dataset [5]. From Table 1 and 2, the proposed
method achieves better quantitative metrics than the existing gradient prior-
based methods, including both MAP [1, 2, 6] and variational Bayes [4], and
is comparable with the state-of-the-art patch-based method [5], but is much
more efficient. We also provide 2 variants of our method with p fixed as -1
and 0.2 on Sun et al.’s dataset, via which the superiority of iteration-wise
priors is validated as shown in Table 2. More deblurring results of synthetic
and real blurry images are provided in our manuscript and supplementary,
and the deblurring results by the proposed method are more visually plausi-
ble.

Table 1: Comparisons on Levin et al.’s dataset [3] using mean PSNR, mean
SSIM, mean error ratio and mean running time (seconds)

PSNR SSIM Error Ratio Time
Known k 32.31 0.9385 1.0000 —

Krishnan et al. [2] 28.26 0.8547 2.3746 8.9400
Cho & Lee [1] 28.83 0.8801 1.5402 1.3951
Levin et al. [4] 28.79 0.8922 1.5592 78.263
Xu & Jia [6] 29.45 0.9000 1.4071 1.1840
Sun et al. [5] 30.85 0.9191 1.2244 191.03

Ours 30.33 0.9192 1.2537 25.184

Table 2: Comparisons on Sun et al.’s dataset [5] using mean PSNR, mean
SSIM, mean error ratio and mean running time (seconds)

PSNR SSIM Error Ratio Time
Known k 32.35 0.9536 1.0000 —

Krishnan et al. [2] 22.76 0.8136 6.8351 159.29
Cho & Lee [1] 26.13 0.8624 5.0731 10.518
Levin et al. [4] 24.64 0.8606 4.5798 518.59
Xu & Jia [6] 28.11 0.9016 3.2843 6.2940
Sun et al. [5] 29.32 0.9200 2.4036 3911.1

Ours (-1) 27.96 0.9019 3.2188 311.77
Ours (0.2) 28.35 0.9111 2.9877 312.11

Ours 29.10 0.9220 2.4054 311.61
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