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Figure 1: Location-dependent weighting: in the case of Linear Re-
gression (LR), every pixel in a feature map receives the same weight
(0¢, w7, wo,wA). In contrast, our algorithm decomposes each map into
up to N\ blobs (see markings) and weights the contribution of each
blob in a location-dependent manner according to the fixation bank. Our

final output is a weighted sum of all blobs. Green triangle indicates the peak
location in the human ZO map.

Predicting where humans will fixate in a scene has many practical appli-
cations. Biologically-inspired saliency models decompose visual stimuli
into feature maps across multiple scales, and then integrate different feature
channels, e.g., in a linear, MAX, or MAP. However, to date there is no uni-
versally accepted feature integration mechanism. Here, we propose a new
a data-driven solution: We first build a “fixation bank™ by mining training
samples, which maintains the association between local patterns of activa-
tion, in 4 feature channels (color, intensity, orientation, motion) around a
given location, and corresponding human fixation density at that location.
During testing, we decompose feature maps into blobs, extract local acti-
vation patterns around each blob, match those patterns against the fixation
bank by group lasso, and determine weights of blobs based on reconstruc-
tion errors. Our final saliency map is the weighted sum of all blobs. Our
system thus incorporates some amount of spatial and featural context infor-
mation into the location-dependent weighting mechanism.

Fixation Candidates Generation: We treat each ¢;-normalized feature
map F as a gaze probability distribution Px. By sampling sufficient ran-
dom points from Px and clustering them using mean-shift, we obtain IC x
clusters. Each cluster is approximated by a Gaussian blob with cluster cen-
ter as mean and points covariance matrix as variance. Finally each blob on
feature map F is treated as a fixation candidate.

Feature Map Decomposition: After extracting fixation candidates by, k €
{1,2,...,Kx} from feature map F,F € {CZOM}, we decompose raw fea-
ture maps CZOM according to each blob b on F: let §b}— be the decomposed
feature map of blob b, which is a concatenation of 4 decayed feature maps,
ie., 87 = [dS df dP dM)T with
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d}f is the a decayed map of channel f, w.r.t. reference blob b from channel
F, which is sum of Ky decayed blobs from f. In Eq.1, g is the k" blob
from channel f and @y, = exp{— ﬁ ((xp —x1) + (yp —yx)?)} is its weight
w.r.t. reference blob b, where (x;,y;) and (xp,yp) are image plane coordi-
nates of target blob g; and reference blob b respectively, and ¢ controls
decaying rate. Weight wy, is reversely proportional to the spatial proximity
of two blob centers. The decomposed feature map S‘,Z: of reference blob b
is termed as signature of b, which describes local feature pattern around b,
and is used to construct fixation bank during training and reweight blob b
during testing. At the end, the raw feature maps CZOM are decomposed
into ¥ re(czom) Kr signatures S, each of which associates with blob b
from channel F.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Blocked Dictionary Construction: One dictionary D r is built for each
feature channel F (F € {CZOM}), without loss of generality, we take
channel-C-associated dictionary D¢ construction as an example.

For a training frame, suppose there are K¢ Gaussian blobs b; on chan-
nel C, let be §bithe decomposed feature map of b;. If the peak location Py,
of b; is within some distance & to the peak location Pz of ZO map, i.e.,
| Py, — Prolla < &, then S}, is treated as a positive exemplar and assigned to
the 1st block DE; while when | Py, — Prolla > 7, 7> 0AT > &, itis a neg-
ative exemplar and assigned to the 2nd block Dg . This assignment process
iterates over all training frames. Finally, we build a channel-C-associated
dictionary D¢, D¢ = [DE | DY).

Each blocked dictionary D r has two big blocks, and we further divide

training exemplars in each big block into smaller blocks by their peak loca-
tions. In our case, the image plane is cut into M x N non-overlapping cells,
each with size s x s. When the peak location of an exemplar falls into cell 7,
then it is assigned to sub-block i, i ={1,2,...,M x N'}. Finally, each blocked
dictionary D r has 2 x M x N blocks.
Gaussian Blob Reweighting: For a test frame, after extracting decomposed
feature maps of Gaussian blobs, we formulate reweighting of each blob as
a group lasso problem. The final gaze density map is a weighted sum of all
blobs.

For each Gaussian blob on feature maps of a test frame, to calculate its
contributing weight to the final saliency map, we first solve a group lasso
problem and then define its weight as a function of reconstruction errors
from the positive and negative groups. Given a blob b from channel F with
decomposed feature map Sbf , we solve the problem:
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Where fB, is the coefficients of g group, B = (B1, B2, ---,B6), G =2 x M x
N is the entire coefficient vector, Ly = +/|Bg|accounts for varying group
sizes, and A; and A, are controlling parameters making balance between
reconstruction and sparsity.

We define weight of blob b as the ratio between negative and positive
reconstruction errors:
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where eV(S) =|| DY - BN — ST |2, €P(S]) =|| D& BP — 5 | and € is
a small constant to avoid singularity. B and BV are coefficients of positive
and negative groups respectively.

The finally gaze density map Sy of frame f is a weighted sum of all
Gaussian blobs:
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Where gb}; is the k" Gaussian blob by from channel F, a)gk: is its weight
defined in Eq.3, and /C £ is the number of Gaussian blobs on channel F.
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