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Figure 1: Location-dependent weighting: in the case of Linear Re-
gression (LR), every pixel in a feature map receives the same weight
(ωC ,ωI ,ωO,ωM). In contrast, our algorithm decomposes each map into
up to N blobs (see ...... markings) and weights the contribution of each
blob in a location-dependent manner according to the fixation bank. Our
final output is a weighted sum of all blobs. Green triangle indicates the peak
location in the human IO map.

Predicting where humans will fixate in a scene has many practical appli-
cations. Biologically-inspired saliency models decompose visual stimuli
into feature maps across multiple scales, and then integrate different feature
channels, e.g., in a linear, MAX, or MAP. However, to date there is no uni-
versally accepted feature integration mechanism. Here, we propose a new
a data-driven solution: We first build a “fixation bank” by mining training
samples, which maintains the association between local patterns of activa-
tion, in 4 feature channels (color, intensity, orientation, motion) around a
given location, and corresponding human fixation density at that location.
During testing, we decompose feature maps into blobs, extract local acti-
vation patterns around each blob, match those patterns against the fixation
bank by group lasso, and determine weights of blobs based on reconstruc-
tion errors. Our final saliency map is the weighted sum of all blobs. Our
system thus incorporates some amount of spatial and featural context infor-
mation into the location-dependent weighting mechanism.
Fixation Candidates Generation: We treat each `1-normalized feature
map F as a gaze probability distribution PF . By sampling sufficient ran-
dom points from PF and clustering them using mean-shift, we obtain KF
clusters. Each cluster is approximated by a Gaussian blob with cluster cen-
ter as mean and points covariance matrix as variance. Finally each blob on
feature map F is treated as a fixation candidate.
Feature Map Decomposition: After extracting fixation candidates bk,k ∈
{1,2, ...,KF} from feature map F ,F ∈ {CIOM}, we decompose raw fea-
ture maps CIOM according to each blob b on F : let ŜFb be the decomposed
feature map of blob b, which is a concatenation of 4 decayed feature maps,
i.e., ŜFb = [dC

b dI
b dO

b dM
b ]T with

d f
b =

K f

∑
k=1

ωbk ·gk, f ∈ {CIOM} (1)

d f
b is the a decayed map of channel f , w.r.t. reference blob b from channel
F , which is sum of K f decayed blobs from f . In Eq.1, gk is the kth blob
from channel f and ωbk = exp{− 1

2σ 2 ((xb−xk)
2+(yb−yk)

2)} is its weight
w.r.t. reference blob b, where (xk,yk) and (xb,yb) are image plane coordi-
nates of target blob gk and reference blob b respectively, and σ controls
decaying rate. Weight ωbk is reversely proportional to the spatial proximity
of two blob centers. The decomposed feature map ŜFb of reference blob b
is termed as signature of b, which describes local feature pattern around b,
and is used to construct fixation bank during training and reweight blob b
during testing. At the end, the raw feature maps CIOM are decomposed
into ∑F∈{CIOM}KF signatures ŜFb , each of which associates with blob b
from channel F .

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Blocked Dictionary Construction: One dictionary DF is built for each
feature channel F (F ∈ {CIOM}), without loss of generality, we take
channel-C-associated dictionary DC construction as an example.

For a training frame, suppose there are KC Gaussian blobs bi on chan-
nel C, let be Ŝbi the decomposed feature map of bi. If the peak location Pbi

of bi is within some distance ξ to the peak location PIO of IO map, i.e.,
‖Pbi−PIO‖2 ≤ ξ , then Ŝbi is treated as a positive exemplar and assigned to
the 1st block DP

C ; while when ‖Pbi−PIO‖2 ≥ τ, τ > 0∧τ > ξ , it is a neg-
ative exemplar and assigned to the 2nd block DN

C . This assignment process
iterates over all training frames. Finally, we build a channel-C-associated
dictionary DC , DC = [DP

C |D
N
C ].

Each blocked dictionary DF has two big blocks, and we further divide
training exemplars in each big block into smaller blocks by their peak loca-
tions. In our case, the image plane is cut into M×N non-overlapping cells,
each with size s× s. When the peak location of an exemplar falls into cell i,
then it is assigned to sub-block i, i = {1,2, ...,M×N}. Finally, each blocked
dictionary DF has 2×M×N blocks.
Gaussian Blob Reweighting: For a test frame, after extracting decomposed
feature maps of Gaussian blobs, we formulate reweighting of each blob as
a group lasso problem. The final gaze density map is a weighted sum of all
blobs.

For each Gaussian blob on feature maps of a test frame, to calculate its
contributing weight to the final saliency map, we first solve a group lasso
problem and then define its weight as a function of reconstruction errors
from the positive and negative groups. Given a blob b from channel F with
decomposed feature map ŜFb , we solve the problem:

min
β

{1
2
‖DF ·β − ŜF

b ‖
2
2 +λ1

G

∑
g=1

Lg ‖ βg ‖2 +λ2 ‖ β ‖1} (2)

Where βg is the coefficients of gth group, β = (β1,β2, ...,βG), G = 2×M×
N is the entire coefficient vector, Lg =

√
|βg|accounts for varying group

sizes, and λ1 and λ2 are controlling parameters making balance between
reconstruction and sparsity.

We define weight of blob b as the ratio between negative and positive
reconstruction errors:

ω
F
b = ε

N(ŜFb )/
(

ε
P(ŜFb )+ ε

)
(3)

where εN(ŜFb ) =‖DN
F ·β

N − ŜFb ‖2, εP(ŜFb ) =‖DP
F ·β

P− ŜFb ‖2 and ε is
a small constant to avoid singularity. β P and β N are coefficients of positive
and negative groups respectively.

The finally gaze density map S f of frame f is a weighted sum of all
Gaussian blobs:

S f = ∑
F∈{CIOM}

KF

∑
k=1

ω
F
bk
·gFbk

(4)

Where gFbk
is the kth Gaussian blob bk from channel F , ωF

bk
is its weight

defined in Eq.3, and KF is the number of Gaussian blobs on channel F .
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