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Prior methods for material recognition use two distinct approaches. One ap-
proach assesses material identity using reflectance as an intrinsic property of
the surface [2, 5, 8]. Another main approach identifies material labels using
the appearance of the surface within the real world scene [6, 7, 9]. Using
reflectance instead of scene appearance has the advantage that reflectance
is a direct measurement of the material characteristics, instead of its phe-
nomenological appearance [1]. Reflectance is mostly unique to the material,
whereas the appearance is the convoluted end result of the interaction of all
the intrinsic and extrinsic factors and thus more difficult to decipher.

Our approach uses reflectance for material recognition. However, we
bypass the use of a gonioreflectometer by using a novel one-shot reflectance
camera based on a parabolic mirror design [3]. The output of this camera
is a reflectance disk, a dense sampling of the surface reflectance of the ma-
terial projected into a single image as shown for two example surfaces in
Figure 1. The pixel coordinates of these reflectance disks correspond to the
surface viewing angles. The reflectance has class-specific stucture and an-
gular gradients computed in this reflectance space reveal the material class.
We encode the discriminative optical characteristics of materials captured
in the reflectance disks with a texton-based representation to achieve gra-
dient in angular space. We incorporate the utility of boosting to identify
a discriminitive and compact representation. We address the issue of high
dimensionality using a novel application of binary hash codes to encode re-
flectance information in an efficient yet discriminative representation. The
key idea is to obtain sufficient sampling of the reflectance with enough dis-
criminative power and reduce its representation size so that it can be effec-
tively used for probing the material.

(a) Leather Surface (b) Reflectance Disk (c) Texton Map

(d) Auto Paint Surface (e) Reflectance Disk (f) Texton Map

Figure 1: Reflectance disks provide a quick snapshot of the intrinsic re-
flectance of a surface point. Gradients of the reflectance space are captured
with textons and provide a signature for material recognition.

We present a database of reflectance disks comprised of twenty differ-
ent diverse material classes including wood, velvet, ceramic and automotive
paint with 10 spot measurements per surface and with three different sur-
face instances per class. Measurements include three on-axis illumination
angles and ten random spot measurements over the surface. Each spot mea-
surement is a reflectance disk composed of a dense sampling of viewing
angles totaling thousands of reflectance angles per disk. The database of
3600 images or reflectance disks is made publicly available.

We introduce reflectance hashing, a new method that combines binary
hash coding and texton boosting, for efficient and accurate recognition of

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 2: Accuracy of nearest neighbor search and recognition rate as a
function of the number of code bits for the binary embedding with 10 nearest
neighbors. Several binary embedding methods have been evaluated.

materials. Reflectance hashing is based on features selected in many it-
erations (700) and uses iterative quantization [4] as the binary embedding
method. The overall recognition rate is 92.3%, and several individual class
recognition rates are significantly higher than the traditional boosting method.
From the empirical results shown in Figure 2, we see that reflectance hash-
ing recognition rate reaches around 90% when using 128 or 256 bit codes.
The method of ITQ gives the best results for this material recognition task.
These results demonstrate the effectiveness of using reflectance for fast sens-
ing and recognition of real-world materials.
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