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In this work, we investigate the use of exemplar SVMs (linear SVMs
trained with one positive example only and a vast collection of negative ex-
amples) as encoders that turn generic image features into new, task-tailored
features. The proposed feature encoding leverages the ability of the exemplar-
SVM (E-SVM) classifier to extract, from the original representation of the
exemplar image, what is unique about it. While existing image description
pipelines rely on the intuition of the designer to encode uniqueness into the
feature encoding process, our proposed approach does it explicitly relative
to a “universe” of features represented by the generic negatives. We show
that such a post-processing enhances the performance of state-of-the art im-
age retrieval methods based on aggregated image features, as well as the
performance of nearest class mean and K-nearest neighbor image classifica-
tion methods. We establish these advantages for several features, including
“traditional” features as well as features derived from deep convolutional
neural nets. As an additional contribution, we also propose a recursive ex-
tension of this E-SVM encoding scheme (RE-SVM) that provides further
performance gains.
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Figure 1: Principle of Examplar SVM visual feature encoder. (Top)
Given a generic visual encoder, like BoW, Fisher vector or VLAD, an image
is described as a fixed size feature vector x € RP; (Bottom) Using a pool of
generic negative image features N = {z,-}?]: 1> an E-SVM W is learned for
each input image. The ¢;-normalized E-SVM w is the new encoding of the
image for subsequent analysis.

Feature encoding with E-SVMs We assume that a generic, D-dimensional
image feature encoder is given. This base encoder can be global, based on
aggregated local features, or derived from CNNs-based features (Fig.1, top).
We shall denote by vectors in RP such features. An exemplar SVM can be
computed from the exemplar feature vector x and a large set of generic fea-
ture vectors N = {zi}f\’: | by solving the following optimization problem:
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where A, o and o_ are positive parameters that control the level of regu-
larization and the relative weight of negative examples. We will we refer to
E-SVMs as the ¢;-normalized version of the solution to the above problem
(Fig.1, bottom):

w(x,N) = (@)
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When dependence on x and N is clear from the context, we shall simply
denote w this E-SVM.

Optimization problem (1) is a classic linear SVM problem relying on
hinge loss, with the notable particularity that positive and negative sets are
extremely unbalanced, one positive for up to, say, one million negatives. In
[1], the property of hinge loss to yield dual solutions dependent only on a
small number of (negative) support vectors is leveraged through hard neg-
ative mining. As an alternative efficient solver, we shall rely on stochastic
gradient descent.

We propose using E-SVMs thus computed as new features. Hence we
assume that we are given a first feature encoder, task-dependent or not, that
produces feature vector x from a given image, but we instead use w(x, )
as the task-dependent feature representation for said image. Note that: (1)
While E-SVM is a linear SVM, the resulting encoding is not linear relative
to base feature x; (2) This is a dimension preserving encoding, since the
new image representation still lives in R?, in contrast with high-dimensional
encoding (e.g., using Fisher vectors [2] or explicit feature maps [3]).

Symmetric encoding for image search As demonstrated in [1], the E-
SVM w° = w(x°, ) attached to a given image x° can be used on its own
to retrieve images with very similar content in a dataset D = {x; }’]"I: |- using
scores X | w°. We propose instead a symmetric approach where each image
X; in the dataset is also equipped with its E-SVM feature w; = w(x;,\).
Our approach then consists in sorting all these according to their similarity

sj= w! w° with the E-SVM of the query image.

J
Recursive E-SVMs encoding The above proposition of post-processing
the output x of any generic feature encoder to produce E-SVM features
w(x,\') suggests applying this procedure recursively. We can formalize
this approach by first defining w® £ x and N £ . The k-th recursion of
E-SVM feature computation can then be written as follows for k > 1:

wh = w(wk= VAT 3)
where N* = {w(z, N¥7 1),z e N*1}. 4)

Features built using the k-th recursive E-SVM (RE-SVM-k) procedure
specified in (3) can be used in a manner analogous to E-SMYV to carry out
image retrieval.

Performance gain For image search, a single RE-SVM recursion gives a
large boost to performance obtained with VLAD-64, BoW-1000, Fisher-64
and CNN encodings (See mAP performance in Table below for VLAD-64,
for instance), and a second iteration of E-SVM encoding yield additional
gain.

Holidays  Oxford 5K
VLAD-64 72.7 46.3
VLAD-64 + RE-SVM-1 71.5 55.5
VLAD-64 + RE-SVM-2 78.3 57.5
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