This CVPR2015 extended abstract is the Open Access

Transformation-Invariant Convolutional Jungles

Dmitry Laptev, Joachim M. Buhmann
Department of Computer Science, ETH Zurich, Switzerland

version, provided by the Computer Vision Foundation.

Many Computer Vision problems arise from information processing of data
sources with nuisance variances like scale, orientation, contrast, perspective
foreshortening or — in medical imaging — staining and local warping. In
most cases these variances can be stated a priori and can be used to improve
the generalization of recognition algorithms. We propose a novel super-
vised feature learning approach, which efficiently extracts information from
these constraints to produce interpretable, transformation-invariant features.
The proposed method can incorporate a large class of transformations, e.g.,
shifts, rotations, change of scale, morphological operations, non-linear dis-
tortions, photometric transformations, etc. These features boost the dis-
crimination power of a novel image classification and segmentation method,
which we call Transformation-Invariant Convolutional Jungles (TICJ).

The feature of an image X with associated discrete label y is defined
through a set of a priori known transformations ® = {¢y,...,¢r}, where ¢,
denotes a transformation function and 7' specifies the number of transfor-
mations considered. The results of different simple transformations ¢ (X)
are shown in figure 1, however @ can also contain any combination of these
transformations. We parametrize a feature with a convolutional kernel 6.
The value of the feature for an image X is given by:

fo(x) = max 07 ¢(x)

(1
Because of the maximum, inspired by max-pooling operation in Neu-
ral Networks [2], this equation in most cases gives exactly the same result
fo(x) for the image X itself, and for the transformations of this image ¢ (X).
Lemma 1 formulates the conditions on the set @ for which this holds true.

S(a) S(-f) }—g) S(;1)

Figure 1: Example of transformations ¢(X): identity transformation (a),
rotation (b), translation (c), reflection (d), scaling (e), morphological opera-
tions (f), non-linear distortions (g), brightness and contrast change (h).

(©) Z@l

b (e

-

0

2
i
0
Jl

E

=
-
2

_ T e M

]
)

i

.

-

|

).

(d)*+

Euﬂ -
(b)

r
J
-
i

(@) ©

Figure 2: A visualization of TICJ training process. Each node is represented
with feature parameters 6 and a histogram / of input object classes (for sim-
plicity we consider three classes here). (a) shows the root node, for which

Lemma 1. The feature of the image X defined in equation 1 is transformation- the whole dataset is an input. Using the learned feature fy — the dataset is

invariant if the set ® of all possible transformations forms a group, i.e. sat-
isfies the axioms of closure, associativity, invertibility and identity.

To learn the feature parameter vector 6, we select two classes c¢,cp and
solve the following optimization problem:

)y

it yj=cj Or y;=c;

(fo(Xi) + [yi = 1] — [vi = 2))* + A||T'6[3

(@3]

0 = argmin

Here [] refers to Iverson brackets, that are equal to 1 if - is true and zero oth-
erwise. Matrix I" is a matrix of a 2D differentiation operator in a vectorized
space, that is a Tikhonov regularization matrix. Penalizing the gradient of
the kernel enforces the kernel to be smooth and ensures interpretability of
the inferred kernels (see figure 2). A is a regularization parameter that con-
trols the trade-off between the goodness of separation and the smoothness
of the kernel learned.

Parameter vector 6 learned in this manner results in a transformation-
invariant feature that splits the dataset into two subsets: one subset consists
of the images X; : fg(X;) > 0, another of images X; : f(X;) <O0.

That means that a feature defines a split predicate on the space of im-
ages, and therefore can be used in algorithms such as decision trees: recur-
sively learning new features, splitting the dataset in two parts and dividing
the space until required granularity is achieved. We call this algorithm TICT
(Transformation-Invariant Decision Trees). Because the split takes the lin-
ear combination of all the pixels into account, the proposed algorithm is
similar to convolutional decision trees [1]. However, the features in our case
are non-linear, and therefore TICT does not belong to this category.

The major problem with TICT is that the tree size grows exponentially
with its depth, resulting in overfitting. Therefore, as the final algorithm we
use a modification of it inspired by Decision Jungles [3].

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

split in two subsets to serve as input for two other nodes (b). The algorithm
proceeds by splitting the dataset until the maximum width is achieved (c).
Then some of the data subsets can be joined together with a histogram clus-
tering technique (d). One can say that the resulting feature parameters 0 are
interpretable, e.g. looking like edge and curvature detectors.

TICJ (Transformation-Invariant Decision Jungles) overcome the issues
of TICT by limiting the tree width and therefore space granularity. The idea
of TICJ is very simple: after adding one layer, we perform the clustering
of leaves and join similar leaves together where the similarity of leaves is
measured as the similarity of the histograms of the classes present in a leaf
(see figure 2).

We test the proposed approach on two very different datasets: (i) Yale
face recognition dataset, that is very small (15 classes, 5 images per class for
training), and (ii) Neuronal structures segmentation dataset (contains tens of
thousands of samples for each of two classes). In both datasets we achieve
state of the art results. On the Yale dataset we outperform the competitors
by at least 0.3%, if we consider the algorithms that do not use additional
training data. For the Neuronal membrane segmentation dataset we achieve
the same F-score as Convolutional Neural Networks approach, but we train
TICJ within 3 hours in a single CPU, comparing to about one week CNN
training on a GPU cluster.

[1] Dmitry Laptev and Joachim M Buhmann. Convolutional decision trees
for feature learning and segmentation. In Pattern Recognition. 2014.

[2] Yann LeCun and Yoshua Bengio. Convolutional networks for images,

speech, and time series. The handbook of brain theory and neural net-

works, 1995.

Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John
Winn, and Antonio Criminisi. Decision jungles: Compact and rich
models for classification. In Advances in Neural Information Process-
ing Systems 26. 2013.

(3]

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

