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Shape-from-Template (SfT) is the problem of inferring the shape of a
deformable object as observed in an image using a shape template. We call
2DSfT the ‘usual’ instance of SfT where the shape is a surface embedded
in 3D and the image a 2D projection. We introduce 1DSfT, a novel instance
of SfT where the shape is a curve embedded in 2D and the image a 1D
projection. We focus on isometric deformations, for which 2DSfT is a well-
posed problem, and admits an analytical local solution [1] which may be
used to initialize nonconvex refinement [2]. More precisely, 1DSfT consists
in recovering a curve whose the length between two points is preserved by
the deformation. 1DSfT appears like an easier version of 2DSfT since one
dimension has been removed. However, our study reveals that 1DSfT is
more complicated than seemingly.

This paper presents a theoretical study of 1DSfT for perspective projec-
tion and isometric deformations. We only consider planar scurves, but this
study provide insights for the reconstruction of isometric non-planar curves,
so-called curve-based 2DSfT, which has a wider set of applications. We
show that the 1DSfT properties are different from the 2DSfT ones. A dif-
ferential approach leads to the non-local solvability at any order, but also to
the notion of critical points. These special points of the 2D curve provide
some properties of the solution space. We propose an algorithm to compute
1DSfT solutions following our theoretical contribution. 1DSfT also gives a
framework for testing new ideas in SfT, such as the angle-based parameter-
ization.

Figure 1 illustrates the modeling of 1DSfT. The template T ⊂ R is
deformed smoothly into a curve S ⊂ R2 by an embedding function ϕ =
(ϕx ϕy)

> ∈ C∞(T ,R2). We note Π the perspective projection. The func-
tion η ∈ C∞(T ,R) is the registration warp between the template and the
image I ⊂ R. We assume that S has no self-occlusions in I. Considering
reprojection and isometry constraints, 1DSfT is equivalent to this problem:

Find ϕ ∈C∞(T ,R2) s.t.

{
η = Π◦ϕ (reprojection)
‖ϕ ′‖2

2 = 1 (isometry).
(1)
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Figure 1: General modeling of 1DSfT, the problem of monocular template-
based 2D reconstruction of a deformed curve.

We rewrite this formulation as a first order non-linear ODE:(
ϕ
′
yη
)2

+2ϕyϕ
′
yηη

′+
(
ϕyη

′)2
+
(
ϕ
′
y
)2

= 1. (2)

To deal with equation (2), we use non-holonomic solutions [3] assuming
that ϕy and ϕ ′y are independent variables. We prove that 1DSfT cannot be
exactly solved locally. To study global solutions, we use a change of variable
θ = ϕyε with ε =

√
η2 +1 and we define the critical points as the points

uc ∈ T that cancel the transformed equation from equation (2):

θ
′ =±

√
1−ξ θ 2 with ξ =

η ′2

ε4 . (3)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

We note that 1DSfT cannot be solved uniquely, but we prove that it has a
discrete amount of at least two solutions and this bound is given by the num-
ber of critical points. We explain how to detect these critical points and we
prove some properties about their geometric interpretations and the sharing
of critical solutions between solutions. For instance, at critical points, θ is
recoverable uniquely and so is the depth ϕy. Then, between two consecutive
critical points, the sign of θ ′ is constant.

These propositions allow us to apply the Picard-Lindelöf (PL) theorem
in each interval bounded by two consecutive critical points. This theorem
gives the existence and the uniqueness of solutions in first-order ODEs with
initial conditions, given here by the critical points. Thanks to the PL theo-
rem, we know the maximum number of solutions between two consecutive
critical points, and, thanks to the number of critical points, we know how
many times the PL theorem can be applied along the 2D curve. The number
of solutions M can be shown to be M ≤ 2N+1, with N the number of critical
points.
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Figure 2: Real data experiments. Example of results with real data - Image
used to obtained the 1D image.

The paper describes how we implement this theory to obtain isometric
solutions to 1DSfT. We adapt and test existing 2DSfT methods on simu-
lated and real data. We propose two convex initialization algorithms, a local
analytical one based on infinitesimal planarity and a global one based on
inextensibility, the Maximum Depth Heuristic (MDH) [4]. We refine the
MDH solution with a nonlinear least-squares optimization. At this step, the
isometric parameterization and the reprojection error are used to compute
the cost function. Finally, we use the solution to find the critical points and
compute the other solutions, as figure 2 shows.

Our conclusion is that there is no local exact solution and 1DSfT cannot
be solved uniquely. The complexity of 1DSfT is revealed by the PDE anal-
ysis that provides thanks to the critical points and the PL theorem a bound
on the solution space and a way to obtain solutions to 1DSfT.
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