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Despite the continuous advances in dense 3D surface reconstruction there
are still many object classes which are a challenge for current algorithms.
To tackle such classes shape priors have been proposed. One approach to
shape priors is anisotropic surface regularization based on a prior knowl-
edge about the shape [1]. A shape prior for a given object class is defined
by having a spatially varying anisotropic regularization. This leads to a
very descriptive prior, for example a tabletop is always horizontal, but has
the drawback that the object needs to be exactly aligned with the bounding
box. In this work, we propose an alternative approach to get strong priors,
namely splitting the object into multiple simpler parts which we call seg-
ments. Often these segments correspond to semantic classes and hence we
get a semantic segmentation as a side product of our approach.

To motivate our work we describe the example of a table and observe
that a prior based on a single spatially homogeneous anisotropic regulariza-
tion does not lead to a descriptive shape prior. First, we observe that the
main surface area on the top is horizontal and also there is large surface area
on the legs which is predominantly vertical. Hence a prior on the surface
orientation of a table should penalize those mostly observed directions less
than others. In terms of dense volumetric 3D reconstruction the main dif-
ficulties in reconstructing a table are the thin leg structures that easily get
disconnected and holes appearing in the often texture-less top surfaces. The
single anisotropic prior would not help in either of these cases. It would pe-
nalize holes in the top and disconnected legs less and therefore make them
more likely, leading to a very weak shape prior. Our proposed solution is,
splitting the object into a top part and legs. Now we can define three dif-
ferent smoothness terms for the surface between the top and the legs, for
the top and for the legs. Now each of the surfaces has a strong predominant
direction, the top is mostly horizontal, the legs are mostly vertical and the
transition between the legs and the top is strictly horizontal. Note that such a
prior does not need an exact location of the object, only the main directions
need to be known.

The idea of our shape prior formulation is coming from the study of
equilibrium shapes of crystals [3]. Anisotropic surface regularization can be
seen as preferring object shapes which follow the same shape as a convex
example shape, named Wulff shape. The Wulff shape is exactly the equilib-
rium shape of a crystal. Due to the convexity of the Wulff shapes it becomes
natural that our input object shapes are split into convex or almost convex
segments.

We use a general convex multi-label optimization framework from [5].
For our purposes, the goal is to assign labels to a volumetric domain. We
denote the discretized domain by Ω⊂ R3 and index the voxels by a position
index s. L= {0, . . . ,L−1} is a set of labels, where each of the labels corre-
sponds to one of potentially multiple free space labels or one of the occupied
space labels (for a table there are ground, leg, and tabletop). To formalize
the label assignment task label indicator variables xi

s ∈ [0,1] are introduced,
where xi

s = 1 if label i is assigned to voxel s and xi
s = 0, otherwise. Next we

state the convex energy and will explain its interpretation afterwards.

E(x) = ∑
s∈Ω

(
∑

i
ρ

i
sx

i
s + ∑

i, j:i< j
φ

i j(xi j
s − x ji

s )

)
subject to xi

s = ∑
j
(xi j

s )k, xi
s = ∑

j
(x ji

s−ek
)k (1)

xi
s ≥ 0, ∑

i
xi

s = 1, xi j
s ≥ 0

The variables xi j
s ∈ R3 are used to describe transition gradients of the label

indicator functions. The variables are only allowed to be non-negative and
hence cannot describe full gradients, but by taking the difference yi j

s := xi j
s −
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Figure 1: Top: Example input image and depth map. Bottom: Standard
volumetric fusion result (left) and our result using the proposed segment
based shape prior (right).

x ji
s , the length of the vectors yi j

s describe the amount of change from label xi
s

to label x j
s in the direction of yi j

s . The functions φ i j : R3→ R+ are convex
positively 1-homogeneous functions that act as an anisotropic regularizer of
the surface area [2]. The ρ i

s ∈ R are the unary data costs. They describe the
local preference for label i in voxel s. The index k describes the dimension
and ek is the k-th cannonical basis vector. A set of constraints links the
different variables together.

We show how the segment based anisotropic smoothness terms φ i j are
defined and used in the above formulation for several real-world object
classes (table, tree, dumbbell and mug) and give a method for inferring the
anisotropy from training data. Furthermore, we also demonstrate that parts
of the free space can be understood as a convex segment in order to recon-
struct concavities such as the inside of a mug. In our results we show qual-
itative improvements over a baseline approach [4] using standard isotropic
regularization of the surface area.
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