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Abstract Structural support vector machines (SSVMs) are amongst the
best performing methods for structured computer vision tasks, such as se-
mantic image segmentation or human pose estimation. Training SSVMs,
however, is computationally costly, because it requires repeated calls to a
structured prediction subroutine (called max-oracle), which has to solve an
optimization problem itself, e.g. a graph cut.

In this work, we introduce a new algorithm for SSVM training that is
more efficient than earlier techniques when the max-oracle is computation-
ally expensive, as it is frequently the case in computer vision tasks. The
main idea is to (i) combine the recent stochastic Block-Coordinate Frank-
Wolfe algorithm [2] with efficient hyperplane caching, and (ii) use an auto-
matic selection rule for deciding whether to call the exact max-oracle or to
rely on an approximate one based on the cached hyperplanes.

We show experimentally that this strategy leads to faster convergence
to the optimum with respect to the number of requires oracle calls, and that
this translates into faster convergence with respect to the total runtime when
the max-oracle is slow compared to the other steps of the algorithm.

A C++ implementation is provided at www.ist.ac.at/~vnk.

SSVM objective We now give some technical details. The task of struc-
tured prediction is to predict structured objects, y∈Y , for given inputs, x∈
X . Structural support vector machines (SSVMs) offer a principled way for
learning a structured prediction function, h : X → Y , from training data in a
maximum margin framework. We parameterize h(x)=argmaxy∈Y 〈w,φ(x,y)〉,
where φ : X ×Y→Rd is a joint feature function of inputs and outputs, and
〈·, ·〉 denotes the inner product in Rd . The weight vector, w, is learned from
a training set, {(x1,y1), . . . ,(xn,yn)}, by solving the following convex opti-
mization problem for some regularization parameter λ ≥ 0:

min
w

λ

2
‖w‖2 +

n

∑
i=1

Hi(w). (1)

Here Hi(w) is the (scaled) structured hinge loss that is defined as

Hi(w)=
1
n

max
y∈Y

{
∆(yi,y)−〈w,φ(xi,yi)−φ(xi,y)〉

}
, (2)

where ∆ : Y×Y→R is a task-specific loss function, e.g. the Hamming loss
for image segmentation tasks. It can be written more compactly as

Hi(w)=max
y∈Y
〈ϕ iy, [w 1]〉 with ϕ

iy =
1
n
[(φ(xi,y)−φ(xi,yi)) ∆(yi,y)], (3)

where [a b] ∈ Rd+1 is the concatenation of vector a ∈ Rd and scalar b ∈ R.
Computing the value of Hi(w), or the label that realizes this value, re-

quires solving an optimization problem over the label set. We refer to the
procedure to do so as the max-oracle, or just oracle.

Block-Coordinate Frank Wolfe (BCFW) [2] The algorithm solves the
dual problem to (1). For each term i ∈ [n] it maintains a vector of dual
variables ϕ i ∈Rd+1 which is a convex combination of vectors {ϕ iy |y∈Y}.
It also maintains the sum ϕ = ∑

n
i=1 ϕ i. A basic step of BCFW is to pick an

index i ∈ [n] (e.g. at random), call the i-th oracle to get a subgradient ϕ̂ i of
Hi(w) (for a certain vector w computed from ϕ), and then update ϕ i based
on vectors ϕ i, ϕ̂ i and ϕ . The dual objective is guaranteed to increase (or
stay the same, if we are already at the maximum with respect to ϕ i).

This work: Multi-Plane BCFW (MP-BCFW) We observe that the com-
putational efforts in BCFW can be very unbalanced: there is only Θ(d)
amount of work per each (potentially very slow) oracle call. Also, BCFW
acts wastefully by discarding the plane ϕ̂ i after completing the step for the
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Figure 1: After each approximate pass, we compare the relative progress
(increase in objective per time = slope of the last black line segment) to the
relative progress of the complete iteration so far (slope of the dashed line).
If the former is higher (left), we make another approximate pass. Otherwise,
we start a new iteration by performing an exact pass (right).

term Hi, even though it required an expensive call to the max-oracle to ob-
tain ϕ̂ i. We propose to retain some of these planes, maintaining a working
set Wi for each i ∈ [n]. Inactive planes are removed from Wi after a certain
number of iterations. This is similar to [1], where a working set was used in
a cutting-plane framework. However, we use set Wi in a different way. We
define function H̃i(w) = maxϕ̃ i∈Wi

〈ϕ̃ i, [w 1]〉, which we view as an approx-
imation of Hi(w). We now perform exact passes (where we go through all
i∈ [n] in a random order and call the “exact” oracle for Hi) and approximate
passes (where we call an “approximate” oracle for H̃i instead).

We propose a geometrically motivated criterion described in Fig. 1 to
decide “on the fly” which pass to perform next. Intuitively, it tries to max-
imize the increase of the dual objective per unit of time, This gives a easy-
to-use method whose default settings work well for a range of different sce-
narios (e.g. both fast and slow oracles). Some results are shown below.
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Figure 2: Shaded areas indicate minimum and maximum values over 10 re-
peats. When the max-oracle is fast (USPS and OCR), the multi-plane algo-
rithms (MP-BCFW, MP-BCFW-avg) behave similarly to their single-plane
counterparts (BCFW, BCFW-avg) due to the automatic parameter adjust-
ment. When the max-oracle is computationally costly (HorseSeg, Stanford)
the multi-plane variants converge substantially faster.
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