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3D structure recovery from a collection of 2D images requires the estima-
tion of the camera locations and orientations, i.e. the camera motion. For
large, irregular collections of images, existing methods for the location es-
timation part, which can be formulated as the inverse problem of estimating
n locations t1, t2, . . . , tn in R

3 from noisy measurements of a subset of the

pairwise directions γi j
..=

ti−t j

‖ti−t j‖
(cf. Figure 1), are sensitive to outliers in

direction measurements.
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Figure 1: A (noiseless) instance of the location estimation problem in R
3,

with n = 6 locations and m = 8 pairwise directions.

We represent the pairwise directions using a measurement graph Gt =
(Vt ,Et), where the i’th node in Vt = {1,2, . . . ,n} corresponds to the location
ti and each edge (i, j) ∈ Et is endowed with the direction γi j . Provided with
the set {γi j}(i, j)∈Et

of (noiseless) directions on Gt = (Vt ,Et), we first con-
sider the following fundamental questions: Can we uniquely realize {ti}i∈Vt

,
of course, up to a global translation and scale? Is unique realizability a
generic property of Gt and can it be decided efficiently? The unique realiz-
ability of locations (in R

d , d ≥ 2) was previously studied under the general
title of parallel rigidity theory (see, e.g., [1, 4, 6]), and was shown to be a
generic property of Gt , which admits a complete combinatorial characteri-
zation:

Theorem 1. For a graph G = (V,E), let (d−1)E denote the set consisting

of (d − 1) copies of each edge in E. Then, G is generically parallel rigid

in R
d if and only if there exists a nonempty set D ⊆ (d − 1)E, with |D| =

d|V |− (d +1), such that for all subsets D′ of D, we have

|D′| ≤ d|V (D′)|− (d +1) , (1)

where V (D′) denotes the vertex set of the edges in D′.

There exist efficient algorithms for testing parallel rigidity (see, e.g., [4]
for a randomized spectral test having a time complexity of O(m)). More-
over, for a graph that is not parallel rigid, maximal uniquely realizable
subgraphs can be efficiently extracted (see, e.g., [2]). For noisy direction
measurements, we consider problem instances on parallel rigid graphs to be
well-posed instances.

Now, suppose that we are given a set of noisy pairwise direction mea-
surements {γi j}(i, j)∈Et

, i.e., for each (i, j) ∈ Et , γi j satisfies

γi j =
ti − t j

‖ti − t j‖
+ ε

γ
i j (2)

where, ε
γ
i j denotes the direction error. Our objective is to estimate the lo-

cations {ti}i∈Vt
by maintaining robustness to outliers (i.e., γi j’s with large

ε
γ
i j’s) in a computationally efficient manner. In this respect, we first rewrite

(2) as

ti − t j = ‖ti − t j‖γi j + ε t
i j (3)

⇐⇒ ε t

i j = ti − t j −di jγi j (4)

where, ε t
i j denotes the displacement error, and we define di j

..= ‖ti − t j‖

to rewrite ε t

i j linearly in ti, t j and di j . Observe that, large direction errors
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Figure 2: Snapshots of selected 3D structures computed using the initial
location estimates of the LUD solver (5) (without bundle adjustment).

ε
γ
i j’s induce large displacement errors ε t

i j’s. Hence, we employ displacement
error minimization as a substitute for direction error minimization. Also, to
maintain robustness to large ε t

i j’s, we minimize the sum of unsquared norms

of ε t
i j’s, and for computational efficiency, we drop the intrinsic non-convex

constraints di j = ‖ti − t j‖ to obtain the convex “least unsquared deviations”
(LUD) formulation

minimize
{ti},{di j}

∑
(i, j)∈Et

∥

∥ti − t j −di jγi j

∥

∥

subject to ∑
i∈Vt

ti = 0 ; di j ≥ 1, ∀(i, j) ∈ Et

(5)

where the constraints are used to remove the global ambiguities, and to pre-
vent trivial solutions, as well as solutions clustered around a few locations.

In our paper, we also provide a new method for estimating γi j that
is robust to outliers in point correspondences, and an efficient iteratively-
reweighted least squares (IRLS) algorithm to solve the LUD problem (5).
Additionally, we compare the performance of our formulations to various
methods in the literature through experiments on synthetic data sets, and In-
ternet photo collections (cf. Figure 2 for selected 3D structures computed
using the LUD solver (5)), which demonstrate the relatively high accuracy
and efficiency of our approach.
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We note that the least squares version of (5) (i.e., the program with the cost function

∑(i, j)∈Et
‖ti − t j −di jγi j‖

2, and the same constraints as in (5)), and the ℓ∞ version of (5), were
previously studied (resp.) in [5] and in [3].
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