This CVPR2015 extended abstract is the Open Access version, provided by the Computer Vision Foundation.

Learning to Detect Motion Boundaries

Philippe Weinzaepfel?, Jerome Revaud?, Zaid Harchaoui®?, Cordelia Schmid?

4 LEAR team, Inria Grenoble Rhone-Alpes, Laboratoire Jean Kuntzmann, CNRS, Univ. Grenoble Alpes, France

b NYU

Precise localization of motion boundaries is essential for the success
of optical flow estimation, as motion boundaries correspond to discontinu-
ities of the optical flow field. Furthermore, many computer vision tasks
could benefit from the knowledge of accurate motion boundaries, e.g. ac-
tion recognition, stereo depth computation, object segmentation in videos
or object tracking. In this paper, we propose a learning-based approach for
motion boundary detection, see Figure 1.

(a) Image

‘;»‘“’ ;J (f/

2

{¢

New dataset. We introduce the YouTube Motion Boundaries dataset (YMB),
composed of 60 sequences taken from real-world videos with manually an-
notated motion boundaries. In contrast to MPI-Sintel and Middlebury, it
comprises low-quality videos with important compression artifacts, and a
larger diversity of scenes and characters.

Experimental results. We show that the proposed approach is both ro-
bust and computationally efficient. It significantly outperforms state-of-the-
art motion-difference approaches on the MPI-Sintel, Middlebury and YMB
datasets, see Figure 3. Moreover, we show that our approach is robust to
failures in the optical flow estimation. We compare the results obtained
with several state-of-the-art optical flow approaches and study the impact of
the different cues used in the random forest.

(c) Flow gradient (Classic+NL) (d) Proposed method

Figure 1: For the image in (a), we show in (b) its ground-truth motion
boundaries, in (c) motion boundaries computed as the gradient of the Clas-
sic+NL flow [2], and in (d) our motion boundary detection. While also using
the Classic+NL flow as a cue, our method is able to detect motion bound-
aries even in places where the flow estimation failed, like on the spear or the
character’s arm.

Method overview. We propose to extend the framework of structured ran-
dom forests for edge detection in still images [1] to predict motion bound-
aries in videos. It relies on training several random trees that indepen-
dently predict a binary motion boundary patch for each image patch, see
Figure 2. The output of the different trees are then averaged to produce the
final boundary detection. During training, we use images and ground-truth
optical flows from the MPI-Sintel benchmark. Our approach leverages the
following cues:

e appearance (RGB color),

e optical flow,

e optical flow error (i.e., difference between the first image and the sec-
ond image warped by the optical flow),

e backward optical flow and backward flow error.

l ‘1‘1 w.
input patch
Image h(l‘, 9)
Optical flow )

DN,
Structured output § |~ 7] A

Figure 2: Illustration of the prediction process with our structured decision
tree. Given an input patch from the left image (represented here by im-
age and flow channels), we predict a binary boundary mask, i.e., a leaf of
the tree. Predicted masks are averaged across all trees and all overlapping
patches to yield the final soft-response boundary map.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Ground-truth MB

Classic+NL flow

Classic+NL MB
i
) J
N
|
L

Proposed method
) ;)
3 ‘\\ i
f
FANDZEN
3
— //,‘
f A
=~
«r\\;

Figure 3: Example results for the YMB dataset with, from top to bot-
tom: images, annotated motion boundaries, flow estimation using Clas-
sic+NL [2], norm of flow gradient, and the motion boundaries estimated
by our method.

[1] P. Dollar and C. L. Zitnick. Structured forests for fast edge detection.
In ICCV, 2013.

[2] D. Sun, S. Roth, and M. Black. A quantitative analysis of current prac-
tices in optical flow estimation and the principles behind them. IJCV,
2014.


http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

