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Morphable models of the human body have been a great success story of
computer vision and graphics. However, to our knowledge, no morphable
model of the human hand has yet been constructed. The hand is in some
senses ideal for such modeling: it is normally unclothed, and has huge
potential for natural 3D user interfaces. Ballan et al. [2] demonstrate that
extremely robust hand tracking is possible given a user-specialized hand
model, but acquiring the model requires manual rigging and a multi-camera
capture setup. Taylor et al. [4] demonstrate acquisition of a user-specialized
model from a single depth camera, but require long calibration sequences in
which all degrees of freedom of the hand have to be exercised.

In this paper, we build a morphable model of hands. Our input, captured
from a single depth camera, is a small set of unordered images containing
diverse subjects performing varied hand poses, together with a rough initial-
ization pose for each frame. The keys to our approach are twofold.

First, we learn only those aspects of pose and shape that are not ex-
plained by a standard rigged model. This reduces the data requirements, but
also has the advantage that the output of our system is a standard subdivision
surface model driven by a linear blend skinning. This ensures our model can
be evaluated extremely efficiently. In contrast, models such as SCAPE [1]
and TenBo [3] involve an additional linear solve at test time, which, while
readily implementable on GPUs, does represent significant additional com-
putational cost.

Second, we fit the model jointly to all partial scans, rather than first
building complete scans per subject and then attempting principal compo-
nent analysis. As we show in experiments on synthetic and real data, this
yields a better model even for unoccluded synthetic data, and a much better
model with real scans that contain missing and noisy data.

Figure 1 illustrates how our end-to-end model jointly learns shape and
pose parameters. Our shape model follows our intuition that the variation
in the shape of a human hand (and skeleton) in a single pose is relatively
compact and can be described by a low dimensional linear subspace. In par-
ticular, given a vector of shape parameters β ∈ RK , the M vertex positions

V (β ;V) =
K

∑
k=1

βkVk (1)

of a neutral hand mesh is recovered as a linear combination of K mesh basis
matrices {Vk}K

k=1 ⊆ R3×M . Likewise the locations

L(β ;L) =
K

∑
k=1

βkLk (2)

of the B bones of an underlying skeleton is recovered as a linear combination
of K bone location basis matrices {Lk}K

k=1 ⊆ R3×B.
We explicitly parameterize pose using a vector θ concatenating a set of

joint angles, global orientation and translation. Our pose model specifies
the articulated deformation that θ invokes on a mesh V (β ) in a neutral pose
using the corresponding skeleton L(β ) and maps the neutral hand mesh and
skeleton to a posed hand mesh P(θ ;V (β ),L(β )) ∈ R3×M , using standard
linear blend skinning.

Following [4], we represent the actual surface of our model using a
subdivision surface. Given a fixed triangulation of M vertex positions V ∈
R3×M , Loop subdivision defines a ‘limit surface’ S(V )⊂R3 by an iterative
mesh smoothing procedure, but may also be explicitly parameterized as

S(u;V ) : Ω×R3×M 7→ R3 , (3)

which is a quartic polynomial mapping from a location u, in an essentially
2D space Ω of surface coordinates, to a point on the 3D subdivision surface.

A major contribution of this work is showing how to jointly learn all
the model parameters from a set of noisy depth images of users’ hands. We
assume we have a diverse set of S different subjects. For each subject s, we
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Figure 1: Our deformable surface model takes into account both pose (via
an animation-ready kinematic model) and shape (in a shape space). A set
of shape parameters β ∈ RK in shape space (left) specifies (upper center)
a neutral mesh V (β ) ∈ R3×M and skeleton parameters L(β ) ∈ R3×B. A
set of joint angles θ deforms the mesh to obtain a specific posed mesh
P(θ ;V (β ),L(β )) ∈ R3×M (bottom left) using the linear blend skinning
function P(·). A subdivision surface function S(·) maps these meshes to
smooth 3D surfaces (right column). Simultaneously optimizing the param-
eters on the full pipeline from joint angles to 3D shape gives the parameters
that best relate the end-to-end model to sparse and noisy real data.

have Fs depth frames of the user performing various hand articulations. In
each frame f , a set of Ns f data points {xs f n}

Ns f
n=1 ⊂ R3 is extracted. We cast

our objective as the problem of minimizing an energy function that measures
how well the posed surface explains the data points. The data term is

Edata = ∑
s

∑
f

∑
n

min
u∈Ω

ρ

(
‖xs f n−S(u;P(θs f ;V (β s),L(β s)))‖

)
(4)

where ρ(·) corresponds to a robust kernel applied to the point position er-
ror. The apparently complex ‘closest point on a subdivision surface’ term
is optimized efficiently using the lifting trick used in [4]. The data term is
added to regularization terms that encode priors about the basis represen-
tation V = {Vk} and L = {Lk}, the shape parameters B = {β s}, the pose
parameters Θ = {θs f }, and the the skinning weights. We can then learn
the model parameters by jointly minimizing the energy over all parameters
simultaneously.

Our experiments demonstrate that the learned model is robust to noise
in the training data. We also show that, at test time, the learned shape ba-
sis is able to generalize to data from unseen subjects in unseen poses and
outperform a strong sensible baseline. Finally, we expect to accurately fit
a personalized model from as few as one or two frames, a clear advantage
over other approaches.
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