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Recently, hashing based approximate nearest neighbor (ANN) search has

attracted much attention. Extensive new algorithms have been developed

and successfully applied to different applications. However, two critical

problems are rarely mentioned. First, in many real-world applications, data

becomes available continuously in streaming fashion. However, most of the

existing hashing models are based on a batch learning fashion. That is to

say, when new data arrives, they have to accumulate all the available data

and re-train new hash functions, which is apparently a less efficient learning

manner for streaming data. Second, for truly large scale datasets, data is

usually stored on a distributed disk group and is too large to be read into

memory. Moreover, one processor is often incapable of handling the large

scale datasets in a feasible amount of time.

In this paper, we propose a novel online hashing approach to address

the two problems mentioned above simultaneously. The proposed method

is largely inspired by the idea of data sketching [4, 5]. We assume that the

data is available in a stream form. Let Di denote the data chunk received at

round i, where i = {1,2, · · · }. In particular, Di = [xi
1,x

i
2, · · · ,x

i
mi
] ∈ R

d×mi

contains mi samples. The mean of the data chunk Di is denoted by Di.

Xt denotes the data matrix accumulated from round 1 to round t. µt is the

mean of data in Xt and nt is the data size. Our approach maintains a small

size sketch for the streaming data online, and we demonstrate that the hash

functions can be efficiently learned based on this sketch.

Suppose we have a d×n matrix X = [x1,x2, · · · ,xn] where each column

xi is a sample in the dataset. Denote W = [w1,w2, · · · ,wr] ∈ R
d×r, then the

objective of PCA hashing [1, 3, 7] can be formally written as:

max
W∈Rd×r

tr(W T (X −µ)(X −µ)TW )

s.t. W TW = Ir (1)

where µ = 1
n ∑n

j=1 x j is the mean of all the data. The notation (X −µ) means

the matrix [x1 − µ,x2 − µ, · · · ,xn − µ], which is equivalent to centering the

data. However, this is obviously a batch based learning method and suffers

from the two limitations we mentioned above.

A sketch of matrix P is another matrix Q which is much smaller than P,

but still preserves the properties of interest. In this way, the storage of the

sketch Q will be much easier, and the computations can be performed much

faster than with the original P [4, 5]. Given a matrix P ∈ R
d×n, we aim to

maintain a much smaller matrix Q ∈ R
d×l with l ≪ n as an approximation

to P. The goal is to track an ε-approximation to the norm of matrix along

any direction, i.e., |‖PT x‖2 −‖QT x‖2| ≤ ε‖P‖2
F , ∀x, ‖x‖ = 1. The latest

significant effort is represented by Frequent Directions (FD) proposed by

Liberty [5]. Inspired by the works in finding frequent items, Liberty inves-

tigated how to apply the Misra-Gries technique [6] to matrix sketching. FD

provides a tight bounds for its performance. Formally, we have

0 ≤ ‖PPT −QQT ‖2 ≤
2

l
‖P‖2

F (2)

We attempt to employ the favorable property that PPT ≈ QQT in [5] to

handle the scalability and streaming data issue in hashing. A very straight-

forward way is sketching the matrix X −µ in Eq.(5) with [5] so that we can

get a significantly smaller sketch Y which approximates X − µ well with

YY T ≈ (X − µ)(X − µ)T . However, it is infeasible because the data is con-

tinuously changing, and therefore the mean of data µ changes too. When a

new data chunk Dt arrives at round t, since the mean of the dataset changes

to µt , we need to re-sketch all the data [D1 − µt ,D2 − µt , · · · ,Dt − µt ].
In order to avoid the mean-varying problem, one can augment every data

chunk with a virtual sample, which is carefully chosen to correct the time-

varying mean. Specifically, for a stream Xt we design a matrix Et as Et =

This is an extended abstract. The full paper is available at the

Computer Vision Foundation webpage.
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Figure 1: Hamming ranking performance: mean average precision (MAP)

of different algorithms with different code lengthes on (a) CIFAR-10 and

(b) GIST-1M. (Best viewed in color)

[D̂1,D̂2, · · · ,D̂t ] where

D̂1 =D1 −D1,

D̂i = [Di −Di,

√
ni−1mi

ni−1 +mi
(Di −µi−1)] (3)

In this way, at any round t, we have

EtE
T
t = cov(Xt ) (4)

Thus, it allows us to find a sketch Yt which approximates Et well and then

learn hash functions online based on this sketch. The overall accumulated

time complexity is O(ntdl + tdl2 + tl3), and the overall space complexity is

O(ld + l2 +dr).
We test the proposed methods on two benchmarks CIFAR-10 and GIST-

1M. Fig.1 reports the most interesting results we think. In this experiment,

we find a sketch of size 200 for the training data and then learn hash func-

tions on this sketch. We find that our method achieve comparable per-

formance to ITQ and outperforms most of state-of-the-arts hash methods.

It implies that the sketch (even of size 200) can preserve sufficient infor-

mation for hash functions learning. We also evaluate the training time of

our method. By dividing the data into 100 chunks, the proposed method

achieves about three times speed-up on both datasets than OKH [2], which

verifies the efficiency of our method in online setting.
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