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Our goal is to recover a complete 3D model from a depth image of an object.
Although we only see a small portion of an object from a single viewpoint,
we can accurately predict the entire shape. This ability to infer complete 3D
shape from a single view is important for grasping as we often reach around
an object to grasp its unseen surfaces. Likewise, shape provides cues to cat-
egory, affordance, and other properties. Recovery of 3D shape from a depth
image is also useful for content creation and augmented reality applications.
But how do we guess the shape of unseen surfaces? One approach is to rec-
ognize the same object or a similar object from past experience: the hidden
surfaces of a favorite coffee mug can be inferred from earlier views or han-
dling. Another is to infer missing surfaces using symmetries to duplicate
and transform observed surfaces.

Figure 1: Pipeline for mesh reconstruction from depth image. A depth im-
age of an piano is matched to a depth image of a table. The exemplar table
is retrieved and deformed to better fit the observed depth points. Finally, a
reconstructed mesh is created based on the observed depth points and de-
formed table exemplar. This mesh outperforms a mesh constructed from
only depth points alone (“Reconstruct Depth”).

Existing approaches rely on user interaction or apply to a limited class
of objects, such as chairs. We aim to fully automatically reconstruct a 3D
model from any category. We take an exemplar-based approach: retrieve
similar objects in a database of 3D models using view-based matching and
transfer the symmetries and surfaces from retrieved models. Given a depth
image, our approach, illustrated in figure 1, is to first retrieve a similar
depth image. The retrieved model is then deformed automatically to bet-
ter approximate the depth image. Our final step, combines features from
the depth image and shape priors from the exemplar mesh to complete an
estimated mesh.

Retrieval: Our retrieval method is based on random forest hashing.[1]
The random forest is trained to partition the training set into similar 3D
shapes based on features of a depth image. Each tree of the forest acts as a
hashing function, mapping the input features to a set of training examples.
Since we wish to Random forest hashing provides sublinear retrieval from
our large mesh-view dataset.

Deformation: We back project the query and retrieved depth maps into
the world coordinates using the retrieved camera parameters. The two point
clouds are aligned through a similarity transformation using pruned spin-
image correspondences.[3] Plane symmetries are automatically detected in
the retrieved mesh using a simplified version of [6]. We then deform the
model using 3D approximation thin-plate splines (TPS) with additional sym-
metry constraints. The symmetry constraints allow us to deform unseen
portions of many meshes.

Completion: We combine information directly observable from the
depthmap, such as voxels we see through cannot be occupied, with cues
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from the matched mesh to produce a feature vector for a voxel map. We then
predict the probability of occupancy using a boosted decision tree based on
LogitBoost [2]. The probabilities are used as unary terms in a graph cut
which encourages smoothness. Finally, we estimate a surface point-cloud
from the voxel occupancy, and apply Poisson Reconstruction [4] to produce
a visually pleasing result.

We investigate completion of 3D models in three cases: novel view
(model in database); novel model (models for other objects of the same
category in database); and novel category (no models from the category in
database). We demonstrate reconstruction on a new synthetic dataset built
from the SHREC12 mesh classification dataset.[5] The dataset consists of
twenty meshes from sixty diverse classes, including musical instruments,
buildings, and vehicles.

Figure 2: A selection of reconstructions: Much of the object is not directly
visible from a single view (“Pointcloud Mesh”). Our result, which com-
pletes the object is shown in the second column, and the ground truth mesh
is shown in the third.
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