This CVPR2015 extended abstract is the Open Access version, provided by the Computer Vision Foundation.

Joint Vanishing Point Extraction and Tracking

Till Kroeger!, Dengxin Dai!, Luc Van Gool'?

'Computer Vision Laboratory, D-ITET, ETH Zurich. 2VISICS, ESAT/PSI, KU Leuven

Figure 1: Tracked vanishing directions are shown together with associated
imaged line segments in three frames of a sequence.

Introduction. A vanishing point (VP) is the point of convergence of a
set of parallel lines in the imaged scene under a projective transformation.
Man-made structures often consist of geometric primitives, such as multiple
sets of parallel or orthogonal planes and lines in the scene. Because of this,
the detection of VPs provides strong cues for the extraction of knowledge
about the unknown 3D world structure. Detected VPs have been used as a
low-level input to many computer vision tasks, such as 3D reconstruction,
autonomous navigation, camera calibration and pose estimation.

Many applications, which take video sequences or unordered image sets
as input, require VP estimates in every frame and VP identities across views
or frames. Usually, when this is needed, the camera pose is assumed to be
known for every frame [1, 5], thereby rendering the VP association across
images simple, or separate steps for VP detection and tracking (particle fil-
ters [6], greedy assignment [4]) are used. Since pose knowledge can only be
obtained through expensive odometry or external motion measurements, it
will often not be available. Separate VP detection and tracking often results
in missed detections or loss and re-initialization of VP tracks due to weak
line support in some frames.

Method. We propose a method for the simultaneous VP extraction over
all images of (calibrated) monocular image sequences with unknown cam-
era poses. We borrow from recent advances in multi-target tracking [2, 7]
and model the problem as a variant of a network-flow tracking problem.
We discretize the set of possible VPs by creating a probabilistic spherical
occupancy grid. For a short sequence such a grid is shown in Fig. 2.

The proposed discretization can now be used in a directed acyclic graph,
similar to flow networks in multi-target tracking-by-detection. Using such
graphs for probabilistic multi-target tracking, object detections or probable
object locations are linked across time through pairwise object transition
arcs. The best (i.e. most probable) set of object trajectories is extracted
using Linear Programing.

Linear Program. Given J; line segments in each of T frames the opti-
mal VP tracks through J possible discretized VP locations are given by A%,
which minimizes the LP objective function

j i

J

T J A J
=Yy [(le(j,i,t) ~Sz(j,i,z)> + (Z%(Lt,j/) -ct(jm’)) -
t [j/

A‘b(jJ) 'Cu(j>t)+/ls(j7l) 'Cs(j7t)+)’€(j7[) 'Ce(jvl)

I

where A = [A;, A, Ap, Ag, A are binary variables, indicating active ([l]ine,
[t]ransition, VP [blin, [s]tart, [e]xit) arcs. We set start, ending and VP bin
unary costs uniformly to Cs = C, = C,, = —log(1/J). The transition cost C;
between two VP bins j and j’ increases with enclosed angle. The line-VP
consistency scores ; indicates how consistent line segment i fits to VP j

This is an extended abstract. See the full paper at the Computer Vision Foundation webpage.

Figure 2: Top: Probabilistic spherical occupancy grid for VP location over a
sequence of three frames. For visualization purposes probabilistic evidence
in each bin is aggregated from all line segments. Line-VP associations are
modeled as free variable in the proposed method. Bottom: Resulting VP
tracks and color-coded association of line evidence to each VP. For visual-
ization purposes a low discretization of 80 bins (instead of 5120) is used.

and increases with enclosed angle. Costs are strictly positive and inhibit VP
track creation. Scores can be negative and support VP track creation.

The LP is solved subject to the following constraints:

C1. Flow conservation: VP bins are maximally traversed by one track.

C2. Line-VP association: Only active VP bins have line segments
associated to it. A line can at most be linked to one VP.

C3. Non-Maximum Suppression: For an active VP bin, we suppress
other neighboring active VP bins.

C4. Angle preservation: For two active VP tracks, we require con-
stancy of the enclosed angle.

CS. Orthogonality (optional): We can optionally enforce that all tracked
VPs have to be mutually orthogonal at all times.

C1 and C2 are essential to enforce the graph structure. C3 is only needed
for strong noise in line endpoints, and C4 for horizontal VPs near/at infinity.
If a Manhattan world is assumed, C5 can be included.

Experiments. We evaluated our approach for three scenarios: joint VP
detection and tracking on a new street-view dataset (48 sequences, total of
14K frames) for joint VP detection and tracking, VP detection and tracking
when camera poses are known, and single-frame orthogonal VP detection
on the York Urban Dataset (YUD) [3].

Acknowledgments: This work was supported by the European Re-
search Council project VarCity (#273940).

[1] Matthew E. Antone and Seth Teller. Automatic Recovery of Relative
Camera Rotations for Urban Scenes. In CVPR, 2000.

Jérdbme Berclaz, Frangois Fleuret, Engin Tiiretken, and Pascal Fua.
Multiple Object Tracking using K-Shortest Paths Optimization. PAMI,
2011.

Patrick Denis, James H. Elder, and Francisco J. Estrada. Efficient Edge-
Based Methods for Estimating Manhattan Frames in Urban Imagery. In
ECCV, 2008.

Wael Elloumi, Sylvie Treuillet, and Rémy Leconge. Tracking Orthogo-
nal Vanishing Points in Video Sequences for a Reliable Camera Orien-
tation in Manhattan World. In CISP, 2012.

Michael Hornacek and Stefan Maierhofer. Extracting Vanishing Points
across Multiple Views. In CVPR, 2011.

Peyman Moghadam and Jun Feng Dong. Road Direction Detection
Based on Vanishing-Point Tracking. IROS, 2012.

Li Zhang, Yuan Li, and Ramakant Nevatia. Global Data Association for
Multi-Object Tracking Using Network Flows. In CVPR, 2008.

(2]

(3]

(4]

(3]

(6]

(7]

http://www.cv-foundation.org/openaccess/CVPR2015.py

