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Figure 1: Patch importance for AUs and basic emotions learned by JPML.

To make possible more efficient use of Facial Action Coding System (FACS),
computer vision has been devoted to the realization of automatic AU cod-
ing. However, two critical problems remain: (1) patch learning (PL): how
to exploit local dependencies between features, and (2) multi-label learning
(ML): how to model strong correlations between AUs. By modeling features
within local patches informed by FACS, it is possible to give greater weights
to informative regions and to reduce a large number of correlated features
to achieve efficient learning. Similarly, just as features among patches have
constrains, AUs have constrains as well. Multi-label learning builds upon
the evidence that one AU increases or decreases the likelihood of others.

Joint patch and multi-label learning: We show in this paper how PL
and ML can be addressed with one stone, and gradually improve each other.
In particular, we propose a framework, termed Joint Patch and Multi-label
Learning (JPML), which attempts to model dependencies among both fea-
tures and AUs. JPML finds a multi-label classification matrix W constrained
with group-wise sparsity and label relations:

min
W

L(W,D)+αΩ(W)+Ψ(W,X), (1)

where L(W,D) is the loss function (we used logistic loss), Ω(W) is the
patch regularizer that enforces sparse rows of W as groups, Ψ(W,X) is a
relational regularizer that constrains predictions on X with AU relations.
Problem (1) involves two ends: identify a discriminative subset of patches
for each AU (patch learning), and incorporate AU relations into model
learning (multi-label learning).

Patch Learning: To address the regional appearance changes on AUs,
we define a group-wise sparsity on the classification matrix W. This pa-
per exploits landmark patches that are centered at facial landmarks, and
128-D SIFT descriptors are extracted around each patch. Given the struc-
tural nature of our problem, we split the rows of W into non-overlapping
groups, where each corresponds to a patch and associates with 128 rows in
W. Ω(W) = ∑

L
`=1 ∑

49
p=1 ‖w

p
` ‖2 is the patch regularizer in problem (1), and

wp
` is the p-th group for the `-th AU, i.e., rows of w` grouped by the patch

p. This grouping encourages a sparse selection of patches by jointly setting
128 values belonging to the same group to zero. As shown in Fig. 1, patch
learning offers a better interpretation of important patches corresponding to
particular AUs and basic emotions.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 2: AU relations discovered from >350,000 frames and used in JPML.

Multi-label Learning: Unlike most studies that derive AU relations
from domain knowledge, this paper statistically explores AU relations among
more than 350,000 frames from CK+ [2], GFT [3], and BP4D [4] datasets.
Fig. 2 shows the relations, defined as positive correlation and negative com-
petition, discovered and used in our study. E.g., AUs (6, 12) is a strong pos-
itive correlations because they co-occur frequently to describe a Duchenne
smile. AUs (12, 15) bears negative competitions because of their negative
influences on each other (coincide with the findings in [1]). To incorporate
the discovered AU relations, we introduce the relational regularizer as:

Ψ(W,X) = β1PC(W,X,P)+β2NC(W,X,N ), (2)

where β1 and β2 are tradeoff coefficients. PC(·, ·, ·) and NC(·, ·, ·) capture
the AU relations of positive correlations and negative competitions:

PC(W,X,P) =
1
2 ∑
(i, j)∈P

γi j‖w>i X−w>j X‖2
2, (3)

NC(W,X,N ) =
N

∑
i=1

|N |

∑
n=1

(
∑

j∈Nn

∣∣∣w>j xi

∣∣∣)2

. (4)

Because Ω(W) and Ψ(W,X) constrain on W differently, Problem (1) can-
not be solved directly. We rewrite Problem (1) by introducing auxiliary
variables W1,W2, and then jointly optimize W1 and W2 using ADMM.

Results: We compared to a number of baselines and the state-of-the-art
patch learning and multi-label learning algorithms. In four of five compar-
isons on three diverse datasets, CK+, GFT, and BP4D, JPML produced the
highest average F1 scores. In no cases, competitive approaches exceed our
patch learning and JPML. This suggests that our patch-based approach is
more powerful, and further boost the performance with additional ML.
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