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The goal of semi-supervised learning is to learn a function f which maps from
an input space M to a target space N given a sparse labeling on data points.
The lack of labels is compensated for by exploiting unlabeled data points to
provide additional information, e.g., on the geometry of and/or probability
distribution on M, from which the data are generated. Regularization tries
to measure and limit the complexity of proposed f solutions by preferring
smaller training errors and placing restrictions on smoothness.

In many applications, the target space N has a structure which may be
defined implicitly or, in some applications, explicitly through pair-wise simi-
larity or dissimilarity potentials. However, current regularization methods
operate only on the function itself, and do not explicitly consider the poten-
tially rich informative structure of N as something which can be used for
regularization. In this paper, we explore regularizing this structure of N or
the relationships between entities in N.

One example that benefits from this principle occurs when relationship
labels are provided. In semi-supervised or constrained spectral cluster-
ing [2, 3, 5], the labels are provided not on the underlying cluster assignment
function f but on the binary relationships k between the function evalua-
tions, as must-link or cannot-link labels. These are exploited by applying
conventional regularization on f with the condition that the constraints are
satisfied. However, in this case, the relationship itself can also be a natural
object to regularize (Fig. 1): For instance, if (x1,x3) must link, i.e., if they
belong to the same cluster, then a relationship function k on N is defined such
that k(f(x1), f(x3)) is positive. For point x,, which is close to x| in M, we
expect the relationship function k(f(x2), f(x3)) is similar to k(f(x1), f(x3))
and therefore, to be positive also.

In general, the relationship itself is not formally defined or observed;
however, in many applications, certain relationships are manifested through
a smooth function, where the number of arguments corresponds to the re-
lationship degree, e.g., a distance metric is a function of two arguments. k
can be defined either directly from the data or from labels; either way, once
the relationship is defined, regularization is independent of the existence of
labels and therefore applies generally to any learning problem.

‘We develop this intuition to a new regularization functional which ex-
tends the well-established harmonic energy functional and p-th iterated
Laplacian semi-norm [1, 4, 6]. In our framework, a relationship is repre-
sented by an n-th order relationship function k defined on N", where n is
application specific. For instance, these relationships can represent similarity
between pairs or n-tuples of entities or, in general, any non-metric relation-
ships, e.g., left of or on top of for generating topographic maps. Specifically,
for semi-supervised classification and spectral data embedding, we use a
Gaussian similarity relationship function k:
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where GJ% > 0. Our new regularizer on M is then defined as:
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where f*hy (x) = k(£(x), f()).

For each fixed x’ in the function, f*h, (x) encodes the relationship be-
tween f(x) and f(x), and since f*hy(x) is a function of a single variable
X €M,V f*hy(x) lies in T (M). This implies that the inner integral measures
the variation of f*h, (x) that corresponds to pair-wise relations between the
fixed ' and each value of x. In particular, when k(a,b) measures the Eu-
clidean distance between a and b, the inner integral is zero only when the
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Figure 1: If two data points x| and x; are close on the domain M of f,
then conventional regularizers enforce that the corresponding function values
f1 and f5 in co-domain N of f are similar (f; = f(x;)). We assume that
relationships between pairs of function evaluations f; and f; are represented
by smooth functions k(f;, f;), e.g., a similarity measure. Our regularizer
explicitly enforces that k(f1, f;) and k(f2, fj) are similar for any j. For in-
stance, if k(f1, f3) is large as f; and f3 are similar, but k(f1, f3) is small as fj
and fy are dissimilar (solid arrows), then our algorithm enforces that k(f3, f3)
and k(f>, f4) are large and small, respectively (dotted arrows), as x; and x,
are close in M. The same principle applies to high-order relationships: if
k> (f1, fs, f¢) represents a ternary relationship, e.g., a third-order correlation,
the similarity of k> (f1, f5, fs) and k2 (f2, fs, fg) is enforced.

distances between each pair f(x) and f(x’) are identical for all x € M. This
does not require that k is zero. Then, the outer integral averages x’ over the
entire M.

In many practical applications, M is not directly observed but indirectly
represented as a sampled point cloud X = {x1,...,x,} and accordingly, we
approximate R based on evaluations of f on &X'. For a given set of u data
points, our final regularization functional is defined as:

Ry(f) = 1r[K " LK], A3)
where r[-] is the trace, Kj; := k(f(x;), f(x;)), and L(u x u) is the graph
Laplacian.

Our new regularizer can easily be combined with existing regulariz-
ers on point clouds. In experiments, we demonstrate that our regularizer
significantly improves the performance of state-of-the-art algorithms in semi-
supervised classification and in spectral data embedding for constrained
clustering and dimensionality reduction.
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