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The goal of semi-supervised learning is to learn a function f which maps from
an input space M to a target space N given a sparse labeling on data points.
The lack of labels is compensated for by exploiting unlabeled data points to
provide additional information, e.g., on the geometry of and/or probability
distribution on M, from which the data are generated. Regularization tries
to measure and limit the complexity of proposed f solutions by preferring
smaller training errors and placing restrictions on smoothness.

In many applications, the target space N has a structure which may be
defined implicitly or, in some applications, explicitly through pair-wise simi-
larity or dissimilarity potentials. However, current regularization methods
operate only on the function itself, and do not explicitly consider the poten-
tially rich informative structure of N as something which can be used for
regularization. In this paper, we explore regularizing this structure of N or
the relationships between entities in N.

One example that benefits from this principle occurs when relationship
labels are provided. In semi-supervised or constrained spectral cluster-
ing [2, 3, 5], the labels are provided not on the underlying cluster assignment
function f but on the binary relationships k between the function evalua-
tions, as must-link or cannot-link labels. These are exploited by applying
conventional regularization on f with the condition that the constraints are
satisfied. However, in this case, the relationship itself can also be a natural
object to regularize (Fig. 1): For instance, if (x1,x3) must link, i.e., if they
belong to the same cluster, then a relationship function k on N is defined such
that k( f (x1), f (x3)) is positive. For point x2, which is close to x1 in M, we
expect the relationship function k( f (x2), f (x3)) is similar to k( f (x1), f (x3))
and therefore, to be positive also.

In general, the relationship itself is not formally defined or observed;
however, in many applications, certain relationships are manifested through
a smooth function, where the number of arguments corresponds to the re-
lationship degree, e.g., a distance metric is a function of two arguments. k
can be defined either directly from the data or from labels; either way, once
the relationship is defined, regularization is independent of the existence of
labels and therefore applies generally to any learning problem.

We develop this intuition to a new regularization functional which ex-
tends the well-established harmonic energy functional and p-th iterated
Laplacian semi-norm [1, 4, 6]. In our framework, a relationship is repre-
sented by an n-th order relationship function k defined on Nn, where n is
application specific. For instance, these relationships can represent similarity
between pairs or n-tuples of entities or, in general, any non-metric relation-
ships, e.g., left of or on top of for generating topographic maps. Specifically,
for semi-supervised classification and spectral data embedding, we use a
Gaussian similarity relationship function k:

k( f (x), f (x′)) = exp

(
−‖ f (x)− f (x′)‖2

σ2
f

)
(1)

where σ2
f > 0. Our new regularizer on M is then defined as:

Rk( f ) =
∫

M

∫
M
‖∇ f ∗hx′(x)‖2

T ∗x dV (x)dV (x′), (2)

where f ∗hx′(x) := k( f (x), f (x′)).
For each fixed x′ in the function, f ∗hx′(x) encodes the relationship be-

tween f (x) and f (x′), and since f ∗hx′(x) is a function of a single variable
x∈M, ∇ f ∗hx′(x) lies in T ∗x (M). This implies that the inner integral measures
the variation of f ∗hx′(x) that corresponds to pair-wise relations between the
fixed x′ and each value of x. In particular, when k(a,b) measures the Eu-
clidean distance between a and b, the inner integral is zero only when the
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Figure 1: If two data points x1 and x2 are close on the domain M of f ,
then conventional regularizers enforce that the corresponding function values
f1 and f2 in co-domain N of f are similar ( fi ≡ f (xi)). We assume that
relationships between pairs of function evaluations fi and f j are represented
by smooth functions k( fi, f j), e.g., a similarity measure. Our regularizer
explicitly enforces that k( f1, f j) and k( f2, f j) are similar for any j. For in-
stance, if k( f1, f3) is large as f1 and f3 are similar, but k( f1, f4) is small as f1
and f4 are dissimilar (solid arrows), then our algorithm enforces that k( f2, f3)
and k( f2, f4) are large and small, respectively (dotted arrows), as x1 and x2
are close in M. The same principle applies to high-order relationships: if
k2( f1, f5, f6) represents a ternary relationship, e.g., a third-order correlation,
the similarity of k2( f1, f5, f6) and k2( f2, f5, f6) is enforced.

distances between each pair f (x) and f (x′) are identical for all x ∈M. This
does not require that k is zero. Then, the outer integral averages x′ over the
entire M.

In many practical applications, M is not directly observed but indirectly
represented as a sampled point cloud X = {x1, . . . ,xu} and accordingly, we
approximate Rk based on evaluations of f on X . For a given set of u data
points, our final regularization functional is defined as:

R̃k(f) = tr[K>LK], (3)

where tr[·] is the trace, Ki j := k( f (xi), f (x j)), and L(u× u) is the graph
Laplacian.

Our new regularizer can easily be combined with existing regulariz-
ers on point clouds. In experiments, we demonstrate that our regularizer
significantly improves the performance of state-of-the-art algorithms in semi-
supervised classification and in spectral data embedding for constrained
clustering and dimensionality reduction.
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