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Subspace clustering is a problem of finding a multi-subspace represen-

tation that best fits sample points drawn from a high-dimensional space. A-

mong the many approaches for subspace clustering, the spectral-clustering-

based methods have shown excellent performance with two main steps.

Firstly, an affinity matrix is built to capture the similarity between pairs

of sample points. Secondly, graph cut is applied to a graph, whose vertices

are the samples and whose weights are prescribed by the affinity matrix, for

segmenting the sample points. Building a "good" affinity matrix is key to

guarantee a good clustering result.

Given data matrix XXX = (xxx1,xxx2, ...,xxxN) ∈ R
M×N with N samples in R

M ,

we denote EEE ∈ R
M×N and ZZZ ∈ R

N×N as the noise matrix and the represen-

tation matrix, respectively, where the entry Zi j of ZZZ measures the similarity

between points xxxi and xxx j.

As described in [5], we consider subspace clustering as the following

optimization problem:

min
ZZZ,EEE

L(EEE)+R(ZZZ)

s.t. XXX = XXXZZZ +EEE,
(1)

where L(EEE) is the loss function to describe noise and R(ZZZ) is the regular-

ization term to impose some properties on the representation matrix ZZZ.

Most previous spectral-clustering-based methods such as Sparse Sub-

space Clustering (SSC) [1], Low-Rank Representation (LRR) [2], Least

Squares Regression (LSR) [3], Correlation Adaptive Subspace Segmenta-

tion (CASS) [4], Correntropy Induced L2 (CIL2) graph [5], rely on specific

norms on ZZZ and EEE to encourage the between-cluster sparsity and grouping

effect of the representation matrix. Unfortunately, real noise in applications

often exhibits very complex statistical distributions, rather than simply be-

ing Gaussian or sparse. So the noise cannot be easily described by a simple

norm like the Frobenious norm, ℓ1-norm, or ℓ2,1-norm.

To address this issue, we propose Mixture of Gaussian Regression (MoG

Regression) for subspace clustering by modeling noise as a Mixture of Gaus-

sians (MoG). The MoG Regression provides an effective way to model a

much broader range of noise distributions. As a result, the obtained affinity

matrix is better at characterizing the structure of data in real applications.

We assume that each column eeen (n = 1, . . . ,N) in EEE follows an MoG

distribution, i.e.,

p(eeen) =
K

∑
k=1

πkN (eeen | 000,ΣΣΣk) , (2)

where K is the number of Gaussian components and πk denotes the mix-

ing weight with πk ≥ 0 and ∑
K
k=1 πk = 1. N (eeen | 000,ΣΣΣk) is the zero-mean

multivariate Gaussian distribution, with ΣΣΣk(k = 1,2, . . . ,K) denoting the co-

variance matrix.

Similar to classical regression analysis, all columns in EEE are assumed to

be independently and identically distributed. So we have

p(EEE) =
N

∏
n=1

K

∑
k=1

πkN (eeen | 000,ΣΣΣk) . (3)

In a general MoG model, we wish to find πππ = (π1, ...,πK)
⊤ and ΣΣΣ =

(ΣΣΣ1, ...,ΣΣΣK) that maximize p(EEE), which is equivalent to minimizing the neg-

ative log likelihood function defined as

− ln p(EEE) =−
N

∑
n=1

ln

(

K

∑
k=1

πkN (eeen | 000,ΣΣΣk)

)

. (4)

If we utilize L(EEE) = − ln p(EEE) to replace the Frobenius norm in the

LSR model, then the proposed MoG Regression method can be formulated
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as follows:

min
ZZZ,,,EEE,,,πππ,,,ΣΣΣ

−
N

∑
n=1

ln

(

K

∑
k=1

πkN (eeen | 000,ΣΣΣk)

)

+λ ‖ ZZZ ‖2
F

s.t. XXX = XXXZZZ +EEE,diag(ZZZ) = 000,

πk ≥ 0,ΣΣΣk ∈ S
+,k = 1, ...,K,

K

∑
k=1

πk = 1,

(5)

where λ > 0 is the regularization parameter, S+ is the set of symmetrical

positive definite (SPD) matrices and the constraint diag(ZZZ) = 000 discourages

using a sample to represent itself. Here we simply choose the Frobenius

norm to regularize ZZZ.

After solving the MoG Regression problem (5) with EM algorithm to

get the representation matrix ZZZ, we define the affinity matrix as

CCC =| ZZZ |+ | ZZZ⊤ |,

where each entry Ci j in CCC measures the similarity between data points xxxi

and xxx j. In the end, we employ Normalize Cut [6] on the affinity matrix CCC to

produce the final clustering results.

Experimental results on multiple public databases show that the pro-

posed method is effective and robust to noise in motion segmentation, hand-

written digits clustering, and complex face clustering. Quantitative compar-

isons in Table 1 demonstrate that MoG Regression significantly outperforms

state-of-the-art subspace clustering methods.

Table 1: The clustering accuracies (%) on the Hopkins 155 database,

MNIST-Back-Rand database and AR databases.

Database SSC LRR LSR CASS CIL2 Ours

2
95.69 96.43 97.48 97.01 97.63 98.76

Hopkins motions

155 3
91.97 92.35 93.21 94.06 94.34 95.03

motions

MNIST-Back-Rand 33.56 22.85 20.55 29.05 36.50 51.98

AR

5
83.05 84.41 87.69 78.46 85.38 93.85

subjects

10
75.06 78.54 63.07 77.69 80.39 88.85

subjects
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