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“Visual textures” are regions of images that exhibit some form of spatial
regularity. In applications such as texture synthesis and classification, algo-
rithms require a small texture to be provided as an input, which is assumed
to be representative of a larger region to be re-synthesized or categorized.
We aim to characterize and infer such representatives automatically. We
construct a new representation that compactly summarizes a texture, while
using significantly less storage, that can be used for texture compression and
synthesis.

To characterize visual textures we use the notions of Markovianity, sta-
tionarity and ergodicity. A texture is then defined as a region Ω of an image I
that can be rectified into a sample of a stochastic process that is stationary,
ergodic and Markovian. It is parametrized by (a) The Markov neighbor-
hood ω and its Markov scale r = |ω|, (b) the stationarity region ω̄ and its
stationarity scale σ = |ω̄|, (c) a sufficient statistic θω defined on ω , and (d)
Ω, the texture region. Note that ω ⊂ ω̄ ⊂ Ω. In describing a texture, we
seek the smallest ω , in the sense of minimum area (“scale”) |ω|= r, so the
corresponding θω is a minimal (Markov) sufficient statistic.
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Figure 1: Left: Texture representation θω̄ and samples drawn from Ω. Right: Image
Texture Synthesis. For each neighborhood ω̂s in the synthesized texture, we find its
nearest neighbor in ω̄ .

In a non-parametric setting, θω is a collection of intensity values. ω̄
.
=⋃

λ=1,...,Λ ωλ is the union of Λ sample regions ωλ . Collectively the neigh-
borhoods capture the variability of the texture. A texture is represented by
(a) ωλ , chosen as a square for all λ with unknown area r, (b) ω̄ , to be deter-
mined and (c) θω̄

.
= {θωλ

}Λ

λ=1
.
= {I(ωλ )}Λ

λ=1 that is uniquely specified by
the image given r and ωλ (Fig. 1).

Given a representation {ω, ω̄,θω̄}, we can synthesize novel instances
of the texture by sampling from dP(I(ω)) within ω̄ . We choose a subset
of neighborhoods from ω̄ that satisfy the compatibility conditions and by
construction also respect the Markov structure. We perform this selection
and simultaneously also infer Î by minimizing [1],

E(Î,{ωs}S
s=1) = ∑

ω̂s∈Ω̂S

νω̂s‖Î(ω̂s)− I(ωs)‖2. (1)

An illustration of the quantities involved is shown in Fig. 1. νω̂s is used to
reduce the effect of outliers. The process is performed in a multi-scale and
multi-resolution fashion.

We extend synthesis to video, by performing synthesis using a causal
approach. We use the already synthesized frames from previous time steps
as a boundary condition and extend the textures to the next frame. Using
a causal approach we also synthesize multiple textures simultaneously for
video and images without computing a segmentation map. This is useful for
applications such as video compression, hole-filling and frame interpolation
(see Fig. 2). Boundary conditions are implicitly defined by the computed
“structure" regions of the videos.

To evaluate the quality of the texture synthesis algorithm, we need a
criterion that measures the similarity of the input, I, and synthesized, Î, tex-
tures. We introduce the Texture Qualitative Criterion (TQC), represented by
ET QC, which is composed of two terms. The first, E1(Î, I), penalizes struc-
tural dissimilarity, whereas E2(Î, I) penalizes statistical dissimilarity. We let
ω̂s/ωi be patches within Ω̂/Ω, the domains of Î/I, and their nearest neighbors
be ωs/ω̂i, which are selected within the domains of I/Î:

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 2: Video texture synthesis in natural images (Hole-filling). From left to right:
(i) Last frame (5th) of input video, (ii) Structure regions, (iii) Structure / Texture
regions, (iv) Synthesized frame (our result).

Tr
ue

 C
la

ss

Precision@R

1 2 3 4 50.2

0.4

0.6

0.8

1

1.2

R

Pr
ec

is
io

n

 

 

ETQF
E1
E2
PSNR
SSIM
VIF

Predicted Class

ETQF E1 E2 PSNR SSIM V IF
Figure 3: Left: Confusion tables for six competing methods. Right: Precision of
methods for various values of retrieved nearest neighbors.

Figure 4: Ordered synthesized textures using TQC. Left: Input texture. Right: Syn-
thesized textures, left is the most similar to the input.
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where ‖.‖χ2 is the χ2 distance, φ(.) is a histogram of filter response values
and gl(I), l = 1, . . . ,L are the responses of the L filters. TQC is given by:

ET QC(Î, I) = E1(Î, I)+E2(Î, I). (4)
To evaluate TQC, we have constructed a dataset made out of 61 classes

of textures, with 10 samples in each class. Each sample is compared against
the other 609 texture images using six different quantities: ET QC, E1, E2,
PSNR, SSIM [3] and V IF [2]. We show confusion tables for R = 5 nearest
neighbors for all competing methods and also plot the precision of each of
the six methods in Fig. 3, for R = 1, . . . ,5. To qualitatively evaluate TQC,
we synthesized a number of textures and ordered them according to their
similarity with the input texture using TQC (Fig. 4).
Our Contributions. (i) We summarize an image/video into a representa-
tion that takes significantly less space to store than the input, (ii) we use our
representation for synthesis on images using the texture optimization tech-
nique, (iii) we extend this framework to video using a causal scheme and
show results for multiple time-varying textures, (iv) we synthesize multiple
textures simultaneously on video without explicitly computing a segmenta-
tion map useful for hole-filling and video compression, and (v) we propose
a criterion (“Texture Qualitative Criterion" (TQC)) that measures structural
and statistical dissimilarity between textures.
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