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For face recognition with image sets, modeling image sets by statistical
models [2, 3, 4] have achieved great performance due to their capacity in
characterizing the set data distribution more flexibly and faithfully. Among
many others, Gaussian Mixture Model (GMM) can precisely capture the
data variations with a multi-modal density. Theoretically, after modeling
image set by GMM, the dissimilarity between any two image sets can be
computed as the distribution divergence between their GMMs. However,
divergence in distribution is not adequate for classification tasks, especially
when the gallery and probe sets have weak statistical correlations.

To address the above problem, in this paper we propose to learn a dis-
criminative and compact representation for Gaussian distributions and then
measure the dissimilarity of two sets with the distance between the learned
representations of pair-wise Gaussian components respectively from either
GMM. Since Gaussian distributions lie on a specific Riemannian manifold
according to information geometry [1], discriminant analysis methods de-
veloped in the Euclidean space cannot be applied directly. We thus propose
a novel method of Discriminant Analysis on Riemannian manifold of
Gaussian distributions (DARG). By exploring various distances between
Gaussians, we derive corresponding provably positive definite probabilistic
kernels, which encode the Riemannian geometry of such manifold prop-
erly. Then through these kernels, a deliberately devised weighted Kernel
Discriminant Analysis (KDA) is utilized to discriminate the Gaussians from
different subjects with their prior probabilities incorporated.
Kernels for Gaussian distributions. Among the derived kernels, here we
take the best performing kernel based on Mahalanobis distance and Log-
Euclidean distance as an example.

We measure the similarity respectively for the two main statistics in
Gaussian distribution, i.e. mean and covariance matrix. While the former
lies in the Euclidean space, the latter, after regularized to symmetric posi-
tive definite (SPD) matrix, resides on the SPD manifold. Formally, given
two Gaussian distributions gi = (µi,Σi) and g j = (µ j,Σ j), we choose Ma-
halanobis distance (MD) for means

MD(µi,µ j) =
√
(µi−µ j)T (Σ−1

i +Σ
−1
j )(µi−µ j), (1)

and Log-Euclidean distance (LED) for covariance matrices
LED(Σi,Σ j) = ‖ log(Σi)− log(Σ j)‖F . (2)

Then we tend to fuse the two distances and construct an integrated kernel
for Gaussians. However, simply exponentiating their sum cannot yield a
positive definite kernel and will suffer from a problem in numerical stabili-
ty. Instead, we derive kernels from the two distances respectively and then
linearly combine them to form a valid kernel for Gaussian distributions.
Specifically, the kernel based on MD is defined as

KMD(µi,µ j) = exp
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while the kernel based on LED is formulated by

KLED(Σi,Σ j) = exp
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)
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Finally we fuse these two kernels in a linear combination form to measure
the similarity between Gaussians as follows,

KMD+LED(gi,g j) = γ1KMD(µi,µ j)+ γ2KLED(Σi,Σ j), (5)
where γ1 and γ2 are the combination coefficients.

Weighted kernel discriminative learning. Formally, suppose we have n
image sets belonging to c classes for training. From their GMM models, we
collect all the N Gaussian components g1,g2, ...,gN , which lie on a Rieman-
nian manifold M. Among them, the Gaussians from the i-th class are denot-
ed as gi

1,g
i
2, ...,g

i
Ni

, (∑c
i=1 Ni = N), with each gi

j accompanied a prior proba-
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Figure 1: Conceptual illustration of the proposed approach. (a) Training
image sets in the gallery. Different colors denote different subjects. (b)
Modeling each image set with GMM. Different legends (i.e. star, circle and
triangle) denote the component Gaussians of different subjects. (c) Dis-
criminant analysis for the Gaussians. By using kernels defined on Rieman-
nian manifold of Gaussian distributions M, the Gaussian components are
mapped to a high-dimensional Hilbert space H, which is further discrimi-
natively reduced to a lower-dimensional subspace Rd .

bility wi
j. Let k(gi,g j) = 〈φ(gi),φ(g j)〉 denote a kernel function (which can

be any one of the derived kernels) measuring similarity of two Gaussians,
where φ(·) maps points on M into a high-dimensional Hilbert space H. For
a local Gaussian gi

j, we denote ki
j = [k(gi

j,g1), ...,k(gi
j,gN)]

T ∈ RN .
To perform discriminative learning with the samples gi

j as well as their
corresponding weights wi

j, in this study we develop a weighted extension of
KDA, which can be formulated as maximizing the following J(α).
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Then the optimization problem can be reduced to solving a generalized
eigenvalue problem: Bα = λWα . After solving its c−1 leading eigenvec-
tors α1,α2, ...,αc−1, we obtain A = [α1,α2, ...,αc−1] ∈ RN×(c−1). Further-
more, the discriminative projection of a new Gaussian gt ∈M is given by
zt = AT kt , where kt = [k(gt ,g1), ...,k(gt ,gN)]

T ∈ RN .
In the testing stage, given a test image set modeled by a GMM, we

first compute the discriminative representations of its component Gaussian-
s. Then face recognition can be simply achieved by finding the maximal
one among all possible cosine similarities between these discriminative rep-
resentations of the test set and those of all the training sets.
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