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(a) Λ = I, AP = 0.14 (b) Λ = D, AP = 0.67 (c) Λ = H, AP = 0.67

Figure 1: Top 40 retrieved images on extended YaleB, with false images
highlighted in blue box (query on top left comes from the sparsest cluster).

Similarity metrics are important building blocks of many visual applica-
tions such as image retrieval, image segmentation, and manifold learning.
Well-known similarity metrics include personalized PageRank, hitting and
commute times, and the pseudo-inverse of graph Laplacian. Despite their
popularity, the understanding of their behaviors is far from complete, and
their use in practice is mostly guided by empirical trials and error analy-
sis. This paper bridges this gap by investigating the fundamental design of
similarity metrics on graphs.

We consider a family of similarity metrics in the following form:

M = [mi j] ∈ Rn×n = (L+αΛ)−1,

where L is the graph Laplacian, Λ = diag(λ1, · · · ,λn) is a positive diagonal
matrix, and α is a positive balancing factor. Note that while L is degenerate,
L+αΛ is invertible, where Λ acts as a regularizer and α controls the degree
of regularization. As M is derived based on the graph Laplacian L, we call M
the Laplacian-based similarity metric. It is shown that M respects the graph
structures when α is small [3], in contrast to metrics such as commute times
which reflect only local information in large graphs [1].

A Unifying View. As one contribution of this paper, we show that M
converges to a meaningful limit when α → 0 and reproduces popular met-
rics including hitting times and the pseudo-inverse of graph Laplacian with
different regularizer Λ. To see this, we decompose M into a ranking matrix
E plus a constant matrix C, as follows:
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where 0 = γ1 < γ2 ≤ ·· · ≤ γn and u1, · · · ,un are the eigenvalues and the
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1) Regularizer I. For Λ = I (identity matrix), we have limα→0 E = L†,
where L† denotes the pseudo-inverse of the graph Laplacian. When α is
sufficiently small, ranking by M is essentially the same as ranking by the
pseudo-inverse of the graph Laplacian, which is widely used in clustering
and recommendation.

2) Regularizer D. For Λ = D = diag(d1, · · · ,dn) (degree matrix), we
have limα→0 E = D−

1
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symD−
1
2 , where Lsym denotes the normalized graph

Laplacian. Given a vertex j, let us consider the hitting times hi j from every
vertex i to hit j. When α is sufficiently small, ranking by the j-th column of
M is essentially the same as ranking by the hitting times (hi j)i=1,...,n, which
is a popular metric in machine learning and social network.

Model Selection. This paper is the first to reveal the important impact
of selecting the regularizer Λ in retrieving the local cluster from a seed. We
find that regularizer I and D behave complementarily, and each has its own
strength and weakness. If the cluster of a query is sparser than surrounding
clusters, D performs much better than I (Fig. 3 (c&g)); while if the cluster is
denser than surrounding clusters, I is preferred (Fig. 3 (b&f)). Such behav-
iors of I and D could be intuitively explained under the partially absorbing
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(a) Λ = I, AP = 0.27 (b) Λ = D, AP = 0.17 (c) Λ = H, AP = 0.27

Figure 2: Top 40 retrieved images on CIFAR-10, with positive images high-
lighted in magenta box (query on top left comes from the densest cluster).

random walk [2]. Since in practice there is no reliable way to determine the
local density in order to select the right model, we propose a new design of
Λ that is able to automatically switch between the I mode and the D mode.

Regularizer H. We propose to set Λ = H := diag(h1,h2, . . . ,hn) with

hi = min(d̂,di), i = 1, . . . ,n,

where d̂ is the τ-th largest entry in (d1,d2, . . . ,dn) (e.g., the median degree).
H is essentially a mix of I and D – it equals to D at vertices with degree
smaller than d̂, and stays constant otherwise. With such setting, H behaves
like D on sparse clusters where the vertices are of relatively low degrees,
and behaves like I while on dense clusters (Fig. 3 (d&h)).

(a) Two Gaussians (b) Λ = I (c) Λ = D (d) Λ = H
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I .540 .999 .770
D .989 .789 .889
H .972 .952 .962

(e) MAP (f) Λ = I (g) Λ = D (h) Λ = H

Figure 3: Two 20-dimensional Gaussians with variances 1 and 0.16, and
400 points in each. The black cross denotes a query. The top 400 ranked
points are highlighted in magenta. (e) Mean average precision (MAP).

In this paper, we develop a unified analysis to characterize the behavior
of any regularizer Λ by evaluating the local divergence ratio, which allows
for comparing different regularizer including I, D, and H. Our theoretical
arguments are justified by rigorous analysis and verified by extensive experi-
ments on image retrieval. The key message of this paper can be summarized
visually in the image retrieval results in Figs. 1 and 2. As expected, Λ = D
and Λ= I show distinctive yet complementary behaviors, while Λ=H auto-
matically biases to the better of the two. While we only report experiments
on image retrieval, our theories and results apply to any visual application
that relies on similarity measures and we expect them to guide more visual
applications in the future.
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