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Since the establishment of computer vision as a field five decades ago,
3D geometric shape has been considered to be one of the most important
cues in object recognition. Even though there are many theories about 3D
representation [1, 3], the success of 3D-based methods has largely been lim-
ited to instance recognition, using model-based keypoint matching [4]. For
object category recognition, 3D shape is not used in any state-of-the-art
recognition methods, mostly due to the lack of a strong generic represen-
tation for 3D geometric shapes. Furthermore, the recent availability of in-
expensive 2.5D depth sensors, such as the Microsoft Kinect, has led to a
renewed interest in 2.5D object recognition from depth maps. As a result,
it is becoming increasingly important to have a strong 3D shape model in
modern computer vision systems.

In this paper, we study generic shape representation for both object cat-
egory recognition and shape completion. While there is some significant
progress on shape synthesis [2] and recovery [6], they are mostly limited
to part-based assembly and heavily relies on expensive part annotation. In-
stead of hand-coding shapes by parts, we desire a data-driven way to learn
the complicate shape distributions from raw 3D data across object categories
and poses, and automatically discover hierarchical compositional part rep-
resentation. This allows us to infer the full 3D volume from a depth map
without the knowledge of object category and pose a priori. We are also
able to compute the potential information gain for recognition with regard
to some occluded voxels. This would allow an active recognition system [5]
to choose an optimal subsequent view for observation, when the category
recognition from the first view is not sufficiently confident.

To study 3D shape representation, we propose to represent a geometric
3D shape as a probability distribution of binary variables on a 3D voxel
grid. Each 3D mesh is represented as a binary tensor: 1 indicates the voxel
is inside the mesh surface, and 0 indicates the voxel is outside the mesh
(i.e., it is empty space). We design a Convolutional Deep Belief Network
(CDBN) to learn this complex probabilistic distribution. The network is
composed of a set of convolution layers and fully-connected layers. We do
not use pooling layers as we find it hurts shape completion.

The energy, E, of a convolutional layer in our model can be computed
as:
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where vl denotes each visible unit, h f
j denotes each hidden unit in a feature

channel f , and W f denotes the convolutional filter. The “∗” sign represents
the convolution operation. In this energy definition, each visible unit vl is
associated with a unique bias term bl to facilitate reconstruction, and all
hidden units {h f

j } in the same convolution channel share the same bias term
c f .

After training the CDBN, the model learns the joint distribution p(x,y)
of voxel data x and object category label y∈{1, · · · ,K}. Although the model
is trained on complete 3D shapes, it is able to recognize objects in single-
view 2.5D depth maps (e.g., from RGB-D sensors). We first convert the
2.5D depth map into a volumetric representation where we categorize each
voxel as free space, surface or occluded, depending on whether it is in front
of, on, or behind the visible surface (i.e., the depth value) from the depth
map. The free space and surface voxels are considered to be observed, and
the occluded voxels are regarded as missing data. The test data is repre-
sented by x = (xo,xu), where xo refers to the observed free space and sur-
face voxels, while xu refers to the unknown voxels. Recognizing the object
category involves estimating p(y|xo). This posterior distribution is approxi-
mated by Gibbs sampling as follows. We initialize xu to random values and
propagate data bottom up to sample a label y from p(y|xo,xu), then we use
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Figure 1: Architecture and filter visualizations of 3D ShapeNets.

the sample y and propagate the data down to sample for unknown voxels xu.
50 iterations of this up-down sampling should suffice to get a shape comple-
tion x, and its corresponding label y. The above procedure runs in parallel
for a large number of particles resulting in a variety of completion results
corresponding to potentially different classes.

Training a 3D shape model that captures intra-class variance requires a
large collection of 3D shapes. Previous CAD datasets (e.g., [7]) are limited
both in the variety of categories and the number of examples per category.
Therefore, we construct ModelNet, a new large scale 3D CAD model dataset
to train our data-hungry deep learning model. Our new dataset is 22 times
larger than previous ones, containing 151,128 3D CAD models belonging
to 660 unique object categories.

From the experimental results, our model significantly outperforms ex-
isting approaches on 3D mesh classification, mesh retrieval, as well as depth
map object recognition. It is also a promising approach for next-best-view
planning. Source code and data are available at our project website.
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