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A hyperspectral signal records the spectral radiance of a reflective surface,
which is the compound of the illumination spectral power distribution and
the surface reflectance spectra. To extract the illumination and the reflectance
spectra from an observed hyperspectral signal has been a long-standing
problem in photometric computer vision [3, 5, 7]. Specifically, for a dif-
fuse surface point, its radiance di at the i-th spectral band recorded by a
hyperspectral camera is proportional to the product of the illumination li
and the surface reflectance ri, that is,

di = liri,1 ≤ i ≤ m, (1)

where the proportional scalar, accounting for such factors as gain and ex-
posure time, has been omitted, and m denotes the number of spectra bands.
It is also assumed that the spectral sensitivity function of the hyperspectral
camera has been precorrected to be one at all spectral bands. To separate the
observed radiance spectra, one has to assume that both the illumination and
the reflectance spectra are low-dimensional [3, 5, 7], since otherwise there
would be more variables than constraints.

This paper addresses a more practical variant of the classical separation
problem of a single spectral signal under restricted subspace illumination,
namely, the illumination and reflectance spectra separation problem of a w-
hole hyperspectral image captured under general spectral illumination, here-
after referred to as the IRSS problem (see Fig.1 for an example). We try to
utilize a huge amount of spectral signals in a hyperspectral image to assist
the separation, without imposing any restriction on the illumination spectra.

For a hyperspectral image with n pixels under spatially uniform illu-
mination, the intensity value di j of the j-th pixel at the i-th spectral band
reads

di j = liri j,1 ≤ i ≤ m,1 ≤ j ≤ n, (2)

which can be stacked into a matrix systemd11 · · · d1n
· · · · · · · · ·
dm1 · · · dmn


︸ ︷︷ ︸

Dm×n

=

l1
· · ·

lm


︸ ︷︷ ︸

Lm×m

r11 · · · r1n
· · · · · · · · ·
rm1 · · · rmn


︸ ︷︷ ︸

Rm×n

. (3)

The above system has mn constraints in the observation matrix D and m(n+
1) variables in the diagonal illumination matrix L and the reflectance matrix
R, which means that the IRSS problem without any assumption on illumi-
nation nor reflectance is underconstrained, no matter how many signals we
have.

It has been widely agreed that reflectance spectra lie in a low-dimensional
linear subspace. Therefore, we introduce the subspace model of reflectance
R, and rewrite eq.(3) into

Dm×n = Lm×mRm×n = Lm×mBm×sCs×n, (4)

in which B and C denote the spectral bases and coefficients, respectively,
and s the subspace dimensionality. According to [8, 9], s is often chosen to
be around 8 so as to reach the best tradeoff between expression power and
noise resistance in the process of fitting reflectance spectra.

As shown in eq.(4), the IRSS problem is actually a low-rank matrix fac-
torization problem. More interestingly, the low-rank formulation of IRSS is
very similar to that of the nonrigid structure-from-motion problem (NRSfM)
[1, 2, 4, 6] in geometric vision, thus can be regarded as a spectra-domain
counterpart to the NRSfM problem in time-domain.

We have proved that this IRSS problem assumes a unique solution up to
an unknown scale between the illumination and reflectance components, un-
der the standard assumption that reflectance spectra lie in a low-dimensional
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Figure 1: Given a hyperspectral image (a), the IRSS problem is to simul-
taneously estimate the illumination spectrum (b) and the reflectance spectra
of all pixels (c). Hyperspectral images are shown in RGB for visualization.

linear subspace. Considering that this subspace model is not perfectly error-
less and the image intensity values usually suffer from noise, we also devel-
op a scalable algorithm that works in the presence of both model error and
image noise. Rather than explicitly describing the physical imaging process
of those complicated effects beyond diffuse reflectance, like shadows and
highlights, we treat them as outliers to our low-rank model, which can be
accounted for via low-rank matrix approximation operation of a nonnegative
observation matrix under the robust L1-norm error metric.

Quantitative experiments on both synthetic data and real images have
demonstrated that, our separation results of scenes with sufficient color vari-
ation are reasonably accurate, and can benefit some important applications,
such as spectra relighting of a single view and illumination swapping be-
tween two different views.

Our work has left out quite a few important aspects that deserve to be
explored in depth. For example, highlights, being treated as outliers to the
low-rank model in this paper, are known to encode some important informa-
tion of the illumination. Therefore, it would be rewarding to carefully model
and exploit highlights in a physically sound way. As for the application as-
pect, we hope that our separation results can benefit some other potential
applications, such as spectra-based material recognition and hyperspectral
image compression.
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