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Markov Random Field (MRF) is an important tool and has been widely used
in many vision tasks. Thus, the optimization of MRFs is a problem of fun-
damental importance. Recently, Veskler [6] and Kumar et.al [3] propose the
range move algorithms, which are one of the most successful solvers to this
problem. However, two problems have limited the applicability of previous
range move algorithms: 1) They are limited in the types of energies they can
handle (i.e. only truncated convex functions); 2) These algorithms tend to be
very slow compared to other graph-cut based algorithms (e.g. α-expansion
and αβ -swap [1]). To solve the problems, we propose a generalized range
swap algorithm (GRSA) for efficient optimization of MRFs in this paper.

The GRSA optimizes the MRFs by a series of iterative moves, and it
converges when there is no move can be found to decrease the MRF energy.
We define L={0, · · · ,n} to be the label set, and Ls={l1, · · · , lm} (li < li+1)
to be a subset chosen from L. Let Pl = {p∈ P| fp = l} denote the set of
vertices assigned label l, and PS={p∈P| fp∈Ls} denote the set of vertices
whose labels belong to Ls. Then, a move from f to f ′ is called a range swap
move (RSM) on Ls, if P ′S=PS , and P ′l =Pl for any label l /∈Ls. To address
the first problem, we extend the GRSA to arbitrary semimetric energies by
restricting the chosen labels in each move so that the energy satisfies the
following submodular condition [4] on the chosen subset.

Definition 1 Given a pairwise potential θ(α,β ), we call Ls a submodular
set, if it satisfies

θ(li+1,l j)−θ(li+1,l j+1)−θ(li,l j)+θ(li,l j+1)≥ 0 (1)
for any pair of labels li, l j ∈ Ls(1≤ i, j<m).

Furthermore, to feasibly choose the labels which satisfy the submodular
condition, we provide a sufficient condition of the submodularity.

Theorem 1 Given a pairwise function θ(α,β )=g(x) (x= |α−β |) on do-
main X =[0,c], assume there is an interval Xs =[a,b] (0 ≤a<b≤ c) sat-
isfying: (i) g(x) is locally convex on [a,b], and (ii) a ∗ (g(a+1)− g(a)) ≥
g(a)−g(0). Then Ls={l1, · · · , lm} is a submodular subset, if |li− l j|∈ [a,b]
for any pair of labels li, l j∈Ls.

With Theorem 1, we can obtain a series of candidate submodular sets while
given an arbitrary semimetric functions. The range swap move executed
on any of these submodular sets can be exactly solved by computing the
st-mincut problem.

For the second problem, previous range swap algorithms execute the
set of all possible range moves Lαβ = {α,α+1, · · · ,β}, where |α−β |=
T , and T is the truncated factor in a truncate convex function (e.g. θ =
min{| fp− fq|,T}). However, there are many repeated labels in these moves.
In practice, we find the requirement is sufficient to ensure the quality of
solutions that any pair of labels should be simultaneously considered once
in one cycle of iterative moves, i.e., every vertex should have chance to swap
its current label with any other labels. We dynamically obtain the iterative
moves by solving a set cover problem (SCP) [2], which greatly reduces the
number of moves during the optimization.

In a SCP, we are usually given an universe U of m elements, a collection
of set S = {S1, ...,Sk} where Si ⊆ U , and a cost function c : S→R. The
objective of the set cover problem is to find a cover S ′ ⊆ S that covers all
the element in U and minimizes the costs.

In the GRSA, let L1,L2, · · · ,Lk be the series of submodular sets and
let C(L)={(0,1),(0,2), · · · ,(n−1,n)} to be the set containing all the pairs
of labels in L. We define the universe U = C(L), and the collection of set
Si = C(Li). Therefore, the moves can be obtained by solving the following
set cover problem:

min ∑
Si∈S ′

c(Si) s.t.
⋃

Si∈S ′
Si =U . (2)

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Algorithm 1 The Generalized Range Swap Algorithm
Input:

1: The label set L= {0, · · · ,n}, and the pairwise function θ(α,β ) = g(x) (x = |α−
β |).

Initialization:
2: Find the series of submodular sets Li with the total enumeration according to

Theorem 1.
3: Get the collection of sets S = {S1, ...,Sk} where Si = C(Li), and initialize U =

C(L), Sc :=∅.
4: Initialize the labeling f .

Iteration:
5: repeat
6: while Sc 6=U do
7: Choose Si ∈ S, which minimizes the cost per element c(Si)

|Sc∪Si|−|Sc | .
8: Set Sc := Si ∪Sc and Ls := Li where Si = C(Li).
9: Get the new labeling f ′ = argminE( f ) within the range swap move on Ls.

10: If E( f ′)< E( f ), set f := f ′.
11: end while
12: until No moves can be found to decrease E( f ).
Output:
13: Return the labeling f .
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Figure 1: The results obtained on image restoration. (a) shows the energy
obtained by different algorithms with running time on penguin. (b) shows
the running time taken by every cycle of iterations in different algorithms,
and the number of cycles that each algorithm takes to converge.

Although the SCP is an NP hard problem, fortunately, the greedy algo-
rithm [5] can successfully achieve an approximate solution in polynomial
time. Algorithm 1 describes the iterative process of the GRSA, where the
moves are chosen by dynamically solving the SCP with the greedy algorith-
m.

We evaluate the GRSA on both synthetic data and real vision applica-
tions of image restoration and stereo matching. As illustrated in Figure 1,
experiments show that the GRSA offers a great speedup over previous range
swap algorithms (e.g. it can be at least 3-6 times faster than previous range
swap methods, and sometimes even faster than αβ -swap), while it obtains
competitive solutions.
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[5] Peter Slavĺłk. A tight analysis of the greedy algorithm for set cover.
Journal of Algorithms, 25, 1997.

[6] Olga Veksler. Graph cut based optimization for mrfs with truncated
convex priors. In CVPR, 2007.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

