
Oriented Edge Forests for Boundary Detection

Sam Hallman, Charless C. Fowlkes
Department of Computer Science, University of California, Irvine

Figure 1: Our boundary detector consists of a decision forest that analyzes
local patches and outputs probability distributions over the space of oriented
edges passing through the patch. This space is indexed by orientation and
signed distance to the edge (d,θ). These local predictions are calibrated and
fused over an image pyramid to yield a final oriented boundary map.

In recent years, work in boundary detection has seen a strong push toward
data-driven approaches. For example, [6] uses sparse coding to improve the
hand-designed gradient features from [1], while [4, 5] predict the probability
of a boundary at an image location using a cascade or randomized decision
forest built over simple image features. The highly successful structured
forest detector [3] evolved from [5] by moving from a fixed set of classes
to an unrestricted output space, and it was posited that this was key to its
performance advantage.

In this work we show that, in fact, with the right set of fixed clusters the
resulting model outperforms published results on the challenging BSDS500
boundary detection benchmark. Specifically, our approach applies the ro-
bust machinery of random decision forests to the simple task of accurately
detecting straight-line boundaries at different candidate orientations and po-
sitions within a small image patch (Fig. 1). Unlike SCG [6] or, [5], which
also trains a forest from a fixed set of cluster labels, we are not restricted to
predicting edges that pass through the center of the detection window.

This space of edge patterns has a simple parameterization. From a
ground truth boundary image, we categorize patches either as non-boundary
or as belonging to one of a fixed number of edge categories. Boundary
patches are labeled according to the distance d and orientation θ of the edge
pixel closest to the patch center. Thus, patches with d = 0 have an edge
running through the center. This label space is illustrated in Fig. 1. We bin
the space of distances and angles and assign every boundary patch one of
K discrete labels. This allows for easy application of off-the-shelf decision
forest training code for k-way classification.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Forest−generated posterior probabilities W

E
[

g
ro

u
n

d
 t

ru
th

 p
ro

b
a

b
ily

 |
 W

]

Error bars (µ ± σ/√n)

Fitted curve 1−exp(−aw)

Figure 2: We provide a simple procedure for calibrating forest-generated
posterior probabilities. This reliability plot shows the empirical probability
of a ground-truth edge label as a function of the score output by the forest.
The red curve shows a simple functional fit 1−exp(−βw) which appears to
match the empirical distribution well. Per-scale calibration prior to combin-
ing predictions across scales improves performance.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

[F=.80] Human

[F=.76,AP=.76] OEF+calibration+MCG

[F=.75,AP=.82] OEF+calibration (ours)

[F=.75,AP=.81] OEF (ours)

[F=.75,AP=.80] SE (Dollar & Zitnick, PAMI’15)

[F=.74,AP=.77] SCG (Ren & Bo, NIPS’12)

[F=.73,AP=.78] Sketch Tokens (Lim et al, CVPR’13)

[F=.73,AP=.73] gPb−owt−ucm (Arbelaez et al, PAMI’11)

Figure 3: Despite its simplicity, our decision forest model achieves top per-
formance on BSDS (red curve). An additional step of calibrating the poste-
rior probabilities emitted by the forest further increases performance (blue
curve). The full system runs in 2 seconds per image and, if combined with
MCG [2], achieves an F-measure of 0.76 (cyan curve).

Once a forest is trained to recognize these oriented edge patterns, we
apply it over the input image in a scanning-window fashion, generating a
posterior distribution over the K +1 classes at each location. Because these
distributions express the likelihood of both centered (d = 0) as well as dis-
tant, off-center (d 6= 0) edges, the probability of boundary at a given location
is necessarily determined by the tree predictions over an entire neighbor-
hood around that location. We show that it helps to calibrate these predicted
probabilities to match the true posterior distribution over edge types for that
patch. Our calibration approach is illustrated in Fig. 2. We aggregate cal-
ibrated predictions across the whole image by compositing the boundary
map predictions into the image, each weighted by its posterior probability.

The final system achieves state-of-the-art performance. Fig. 3 shows
the performance of our model on the BSDS500 test set over the full range
of operating thresholds. Our system outperforms all existing methods in the
high precision regime, and is virtually identical to SE [3] at high recall. As
a result, AP is increased a full two points over competing methods. A con-
clusion of our work is that simply detecting oriented lines is as effective as
any of the more complex strategies that attempt to model corners, junctions,
and other complex edge patterns.

[1] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik.
Contour detection and hierarchical image segmentation. PAMI, 2011.

[2] Pablo Arbeláez, Jordi Pont-Tuset, Jonathan T Barron, Ferran Marques,
and Jitendra Malik. Multiscale combinatorial grouping. CVPR, 2014.

[3] Piotr Dollár and C. Lawrence Zitnick. Fast edge detection using struc-
tured forests. PAMI, 2015.

[4] Piotr Dollar, Zhuowen Tu, and Serge Belongie. Supervised learning of
edges and object boundaries. In CVPR, pages 1964–1971. IEEE, 2006.

[5] Joseph J Lim, C Lawrence Zitnick, and Piotr Dollár. Sketch tokens: A
learned mid-level representation for contour and object detection. In
CVPR, pages 3158–3165. IEEE, 2013.

[6] Ren Xiaofeng and Liefeng Bo. Discriminatively trained sparse code
gradients for contour detection. In NIPS, pages 584–592, 2012.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

