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Figure 1: The one-way procedure from localization to template alignmen-
t makes each module rely on results from the previous one. Contrarily,
back-propagation highlighted by dashed arrow makes it possible to refine
localization according to the classification and alignment results. It forms a
bi-directional refinement process.

Fine-grained object recognition aims to identify sub-category object classes,
which includes finding subtle difference among species of animals, product
brands, and even architectural styles. Thanks to recent success of convolu-
tional neural networks (CNN) [5], good performance was achieved on fine-
grained tasks [9]. However, existing solutions perform localization, align-
ment, and classification independently and consecutively. This procedure
is illustrated in Figure 1 using solid-line arrows where parts are localized,
aligned according to templates, and then fed into the classification neural
network. Obviously, any error arising during localization could influence
alignment and classification, which makes the fine-grained recognition still
have much room to improve.

In this paper, we propose a feedback-control framework to back-propagate
alignment and classification errors to localization, in order to optimally up-
date all states in each iteration. This process is highlighted by dashed arrows
in Figure 1. A valve linkage function (VLF) is proposed in the template
alignment sub-network to optimally connect the localization and classifica-
tion modules in our deep localization, alignment and classification (LAC)
system. The architecture of our deep LAC system is shown in Figure 2. In
FP, VLF outputs a pose-aligned part image to classification. In BP, it should
be a function containing necessary parameters for updating localization sub-
network. Therefore, our VLF not only connects all sub-networks, but also
functions as information valve to compromise classification and alignment
errors. If alignment is good enough in the FP stage, VLF guarantees cor-
responding accurate classification. Otherwise, errors propagated from clas-
sification finely tune the previous modules. These effects make the whole
network quickly reach a stable state.

We apply our method to the widely employed CUB-200-2011 datasets
[7] for automatic classification. The results are listed in Table 1.
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Figure 2: Deep LAC. It consists of localization, alignment and classification
sub-networks. With the help of VLF, alignment sub-network outputs pose-
aligned part image for classification sub-one in FP stage, while classification
and alignment errors can be propagated back to localization sub-one in the
BP stage.

Methods Accuracy
Lee et al. [6] 41.01%
Berg et al. [1] 56.89%

Goering et al. [4] 57.84%
Chai et al. [2] 59.40%

Gravves et al. [3] 62.70%
Zhang et al. [8] 64.96%
Zhang et al. [9] 76.37%

Ours (head) 72.00%
Ours (body) 52.65%

Ours (head+body) 78.12%
Whole image 65.00%

Ours (head+body) + whole image 80.26%

Table 1: Comparison with state-of-the-arts on the CUB-200-2011 dataset.
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