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Figure 1: Do dogs eat ice cream? While we humans have no trouble answering this
question, existing text-based methods have a tough time. In this paper, we present a
novel approach that can visually verify arbitrary relation phrases.

How can we know whether a statement about our world is valid. For ex-
ample, given a relationship between a pair of entities e.g., ‘eat(horse, hay)’,
how can we know whether this relationship is true or false in general. Gath-
ering such knowledge about entities and their relationships is one of the
fundamental challenges in knowledge extraction. The key component of
any knowledge extraction system involves verifying the validity of a piece
of gathered information before adding it to a knowledge base. Most previous
works on knowledge extraction have focused purely on text-driven reason-
ing for verifying relation phrases. In this work, we introduce the problem of
visual verification of relation phrases and develop a novel method that can
visually verify the validity of a relationship between a pair of mentions (e.g.,
eat(horse, hay), flutter(butterfly, wings)). Given such a verb-based relation
phrase between common nouns, our approach assess its validity by jointly
analyzing over text and natural images and reasoning about the spatial con-
sistency of the relative configurations of the entities and the relations. The
attractive feature of our proposed framework is that both our model learning
as well as inference steps are performed using no explicit human supervi-
sion. This allows our system to scale up to a large number of relations. Our
approach has been used to not only enrich existing textual knowledge bases
by improving their recall, but also augment open-domain question-answer
reasoning.
Visual Verification: The primary focus of our work is to estimate the confi-
dence of mentions-relation predicates by reasoning with natural images. We
focus our attention to verb-based relations between common nouns. The in-
put to our system is a mentions-relation predicate e.g., ‘eat(horse, hay)’ and
the output is a confidence value denoting its validity. In order to correctly
validate a relation, we need to reason about the underlying entities while
grounding them in the relation being considered. In this paper, we present a
novel verification approach that reasons about the entities in the context of
the relation being considered using webly-supervised models for estimating
the spatial consistency of their relative configurations. Searching for con-
sistencies among the patterns require detectors for each of the elements of
relations i.e., the subject (S), the object (O), the subject-verb combination
(SV), the verb-object combination (VO), and the subject-verb-object com-
bination (SVO). Assuming we have access to these individual detection
models, we formulate visual verification as the problem of estimating the
most probable explanation (MPE) of the multinomial distribution that gov-
erns R. We factorize the marginalization of the joint distribution of R and
the relation elements using a factor graph (depicted in Figure 2):

P(R,S,O,SV,VO,SVO) ∝ ∏
x∈{O,S,SV}

Φ(R,SVO,x)∗

∏
y∈{SV ,S}

Φ(R,VO,y)∗ ∏
z∈{S,O,SV ,VO,SVO}

Ψ(z), (1)

where R corresponds to the relation type and has a multinomial distribution
over the patterns of consistency, the rest of the nodes correspond to relation
element detectors. The potential function Φ provides maximum likelihood
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estimates of each relation type. The Ψ(x) is the unary factor representing
the maximum log likelihood estimates of predictions of detector x.
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Figure 2: Approach Overview. Given a relation predicate, such as fish(bear,salmon)
VisKE formulates visual verification as the problem of estimating the most proba-
ble explanation (MPE) by searching for visual consistencies among the patterns of
subject, object and the action being involved.
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Figure 3: Diverse Question Answering: VisKE is capable of answering diverse ques-
tions about subjects, objects or actions. In comparison to the Language model [2],
VisKE obtains richer and more precise answers to the questions.

Base Set Permute Set Combined Set
Visual Phrase [3] 49.67 14.12 42.49
Co-detection Model 49.24 14.65 43.14
Google Ngram Model [1] 46.17 NA NA
Language Model [2] 56.20 22.68 50.23
VisKE 62.11 20.93 54.67

Table 1: Results (M.A.P.) on the Relation Phrase Dataset. While the language model
achieves a higher accuracy on the Permute set, VisKE gets the best result on the Base
set as well as the Combine set.

Relation Phrase Dataset and Evaluation: We gathered a new dataset of
‘verb(subject, object)’ relation phrases using Google Books Ngram [1]. We
extracted 6093 relations from Google Books (‘Base’ set) and gathered new
relations by randomly permuting the subjects, verbs and objects yielding
and additional 6500 relations (‘Permute’ set). Table 1 summarizes the veri-
fication results on our relation phrase dataset using our approach compared
with the Language Model [2] and other baselines.
Visual Question Answering: The visual knowledge that we have gathered
using our visual verification method can help improve the reasoning within
question-answering systems. In this paper, we show that our method enables
answering generic questions like what do dogs eat?, what animals lay egg?
(see Figure 3). Apart from answering generic questions, our approach can
be useful for answering more specific questions such as those related to
elementary-level general science questions.
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