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Recent object recognition systems, such as convolutional neural networks,
yield remarkable accuracy despite challenging large-scale settings. They
are usually trained and evaluated on large sets of i.i.d test images. However,
many real-life applications do not fit this purpose. For instance, in the task
of guiding a robot in an office environment, classes “chair” and “desk” are
significantly more likely to occur than “giant panda” or “‘canoe”. Moreover,
smaller local visual contexts arise from the sequentiality of the input image
stream. This change in distribution between training and prediction time is a
problem of domain adaptation, and is often seen as a potential cause for loss
of accuracy which is to be prevented. In this work, we argue the opposite,
and aim to take advantage of the label correlations at prediction time to in-
crease the classification accuracy. This problem is similar to the work of Jia
and Darrell in [1] on adapting a classifier to a given subset of queries from
the ImageNet hierarchy. However, while they assume the queries are i.i.d.
samples from an unknown sub-tree, we do not make any assumptions on the
relations between classes at prediction time, and we aim to exploit sequential
information. Our main contribution is a method for adapting a pre-trained
classifier on-the-fly at prediction time. We also propose several approaches
for generating “realistic” sequences of queries (i.e. images belonging to a
joint semantic context) as a framework to evaluate our approach.

We consider a base pre-trained multi-class classifier, f, which assigns
a class label y € ) to an input image x € X'. We also distinguish the data
distribution at training time (denoted by P(x,y)) from the one at predic-
tion time (Q(x,y)). Finally, we assume f to be probabilistic, i.e. f(x) =
argmax,cy fy(x), where the scores fy : X — [0, 1] reflect the conditional
probabilities P(- |y). In a realistic setting, the labels distribution at predic-
tion time, Q(y), may differ from the one used for training the classifier f,
P(y). We assume the latter distribution is known (in practice, for large data
sets, training labels are often uniformly distributed), and that Q(y) is a static
distribution we have no knowledge of. On the contrary, the objects’ visual
appearance does not change between training and prediction time, hence
O(x|y) = P(x]y). Under these assumptions, we use Bayes’ rule to derive a
classifier g which is the class-prior adaptation of f at prediction time [3]:
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Given (x,,yn)n, a sequence of images at prediction time and their ground-
truth classes, we estimate the class distribution using a classical Bayesian
approach, with a symmetric Dirichlet distribution, Dir(et), as prior [2, Chap-
ter 3]. The optimal estimate after seeing the i first queries is given by:
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where n;(y) is the number of occurrences of class y among the i first queries.
We compute these estimates iteratively: given an incoming query x;, we
first predict a label gw (x;) based on the current estimates. A feedback on
the prediction is then received, and used to update n;(y) by a score &;(y),
leading to the updated classifier adaptation, g<i+1>.

In a classical online setting, the true class of the query, y;, is given as
feedback, thus computing n;(y) exactly is trivial (Eq. 3). In a reinforcement
scenario (Eq. 4), only the information of whether the prediction gm (x;) is
correct or not is available: When the prediction matches the true label, we
come back to the previous case, and in the opposite case, we increase n;(y)
by a small uniform weight, except for the wrongly predicted label. Finally,
no feedback is given in the unsupervised setting, hence we have to rely on
the current estimates of the distribution for the update (Eq. 5).

While this approach is well-suited when Q(y) is assumed to be static,
we also propose a dynamic variant of the classifier adaptation, more fitted
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to scenarios where the labels distribution in the prediction phase may vary
over time. The idea is to compute the same estimates as before, but over the
L most recently seen labels rather than all the previous ones: This sliding
window construction amounts to gradually forgetting the outdated history,
hence we now focus on the context arising from the more recent queries.
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We conduct experiments on ImageNet’s ILSVRC2010 and ILSVRC2012
validation sets (1k classes, 50k images each). We evaluate against a pre-
trained neural network classifier from the CCV library with state-of-the-art
accuracy, and a multi-class SVM combined with Platt scaling for proba-
bilistic outputs which we trained using the JSGD toolkit. The choice of
these two very different settings emphasizes the fact that the adaption per-
formances are not biased towards the pre-trained classifier. To the best of our
knowledge, there is no database offering realistic sequences of images with
correlated labels at prediction time, hence we propose several ways of gen-
erating such sequences. The first method (7XT) relies on natural language:
We create each sequence by browsing a classic English book and extract-
ing ImageNet classes along the way. The second approach is to build a 2D
projection of the class space by exploiting a semantic distance between Im-
ageNet classes (e.g. the least common ancestor-distance as induced by the
WordNet hierarchy). We used Multi Dimensional Scaling and Kernelized
Sorting for the projection step, leading to two different databases (MDS and
KS). The label sequences are then generated as a random walk on this space.

Table 1: Top-5 classification error rates without classifier adaptation (CNN),
with regular adaptation (Adapt) or with dynamic adaptation (Dyn.) for the
online and unsupervised setting, on the ILSVRC2012 dataset. Bold text
marks the lowest entries in each setting if the difference is 10~ 3-significant
according to a Wilcoxon signed rank test.

CNN Adapt Adapt Dyn. Dyn.
(tLsvrc12) | (Online) (unsup.) (Online) (unsup.)
TXT | 198 +19 | 128 +19 | 148+ 18 | 145+ 1.7 | 164 £ 1.7
MDs | 16.1+65 | 5.2+3.0 | 6.8£3.6 | 6.6£26 | 81+29
KS 164+18 | 152+1.7 | 165+1.7 | 11.8+13 | 142 £ 1.5
[RND [ 16.5+0.6 [ 1874+0.7 [ 18.0+£0.7 [ 17.24£0.6 [ 169 +0.6

Table 1 summarizes the main results of our experiments with the CCV
neural network classifier. We conclude that the proposed adaptation scheme
improves the accuracy of recognition systems in a real world setting, even
for state-of-the-art classifiers and few to no online feedback. This especially
holds for the TXT and MDS data sets. The dynamic variant proves its use-
fulness on the KS sequences, for which the labels distribution tend to vary
quickly over time. Finally, in the usual i.i.d. setting, there is no context to
benefit from through adaptation, hence a lower accuracy, which, however, is
small enough to be tolerable, especially when using dynamic adaptation.

[1] Yangqing Jia and Trevor Darrell. Latent task adaptation with large-
scale hierarchies. In IEEE International Conference on Computer Vi-
sion (ICCV), 2013.

Kevin P Murphy. Machine Learning: A Probabilistic Perspective. Cam-
bridge, 2012.

Marco Saerens, Patrice Latinne, and Christine Decaestecker. Adjusting

the outputs of a classifier to new a priori probabilities: a simple proce-
dure. Neural Computation, 14(1):21-41, 2002.

(2]

(3]


http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

