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Introduction: Densely matching two correlated images at the pixel level
is one of the most fundamental tasks in computer vision applications. Specif-
ically, for general dense correspondence algorithms, there mainly exist two
principal challenges: (1) photometric variations due to different camera set-
tings and illumination conditions and (2) geometric variations due to view-
point changes, object pose changes, and the non-rigid deformation of objects
between the images. These various factors are projected onto the 2D space;
thus, it is challenging to decompose these factors from the images.

In this paper, we propose the Generalized Deformable Spatial Pyra-
mid (GDSP) model to resolve the challenges and extend the capability of
matching images under versatile forms of geometric variations. We refor-
mulate the existing DSP [1] model by imposing rotation and scale invariant
properties and considering the spatial relationship in the high dimensional
search space through the pyramid structure. This high dimensional regular-
ization directly links to our main contribution: we can effectively preserve
the meaningful inherent geometry and texture in images while allowing a
broad range of geometric variations such as affine, perspective and even
non-rigid deformation. We provide an optimization method of our high di-
mensional objective functions by modifying loopy belief propagation to our
formulation, which is the second contribution of our work.

Generalized Deformable Spatial Pyramid (GDSP): We propose a Gen-
eralized Deformable Spatial Pyramid (GDSP) model, which incorporates a
rotation and scale term into the original DSP model [1] in Fig. 1(a). Our
model allows each grid cell to rotate and increase or decrease itself, which
gives it more flexibility to find its correspondence, as in Fig. 1(b).

(a) The graphical structure of DSP model (b) Comparison of matching methods be-
tween DSP and our GDSP model

Figure 1: The original DSP model and our GDSP model

Let IS and IT denote a source image and a target image to match, re-
spectively. Our generalized objective function becomes

E(t,r,s) = ∑
i

Di(ti,ri,si)+ ∑
{i, j}∈E

Vi j(ti,ri,si, t j,r j,s j). (1)

Each node i takes three states: ti, ri and si, which denote the translation,
rotation and scale in the image coordinate, respectively.

In Eq. (1), data term Di(ti,ri,si) calculates the SIFT matching cost of
node i given its state (ti,ri,si) for all sampling pixels p in the node. The
pairwise term Vi j penalizes the state discrepancy of two nodes that are con-
nected by an edge. To simultaneously regulating multiple states (scale, rota-
tion, translation) that have dependencies, we reflect the influence of rotation
and scale variation on measuring the translation discrepancies by reasoning
in the local spatial coordinate. This spatial reasoning provides a reasonable
smoothness regularization when scale and rotation vary.

In the optimization process, we adopt loopy belief propagation with
modified four-dimensional distance transform. Our optimization decouples
high dimensional correlated states and allows for sequential message up-
date of such states. This optimization scheme reduces the complexity of our
optimization problem from O(n2) to O(n).
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Figure 2: Backward warping results on the source images based on the obtained
dense correspondence when non-rigid deformation exists. The more similar the warp-
ing result is to the source image, the more accurate the obtained dense correspondence
field is.

Results: Experimental results on the public datasets and our own image
collection indicate that our geometry-preserving smoothness shows its su-
periority when two images specifically share similar contents and lie under
non-rigid deformation, as in Fig. 2.

Results on the Mikolajczyk et al. dataset in Table 1, which evaluates
matching performances on scene alignment, reveals that our model best es-
timates dense correspondence fields under planar scale changes, rotation
changes, and perspective transformation, comparing to state-of-the-arts. Re-
sults on the Moseg dataset and challenging non-rigid pairs from Caltech 101
dataset also show our better performance than other benchmarking algo-
rithms in label-transfer metrics. The strength of our model comes from the
high dimensional search, which includes rotation and scale variation while
preserving the internal topology in images through the pyramid structure.

Scene characteristic GDSP (Ours) DSP [1] SIFT Flow [2] DFF [5] SSF [4]
Bikes Blur 0.979 0.941 0.994 0.766 1.000
Trees Blur 0.953 0.951 0.946 0.567 0.969

Graffiti Viewpoint 0.503 0.033 0.238 0.242 0.521
Bricks Viewpoint 0.771 0.230 0.491 0.465 0.829
Bark rotation + scale 0.168 0.007 0.011 0.018 0.021
Boat rotation + scale 0.312 0.003 0.006 0.150 0.002
Cars Illumination 0.995 0.858 0.992 0.437 0.994
UBC JPEG compression 0.998 0.969 0.897 0.753 0.980

Average Rank 1.625 4.125 3.375 4.000 1.875

Table 1: Percentages of correct match on Mikolajczyk et al. dataset [3].
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