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Figure 1: Images [4] segmented into 1000/500/200 superpixels using the
proposed LSC algorithm.

Superpixel segmentation is an increasingly popular image preprocessing
technique used in many computer vision applications. Many different su-
perpixel segmentation algorithms have been proposed[5][2][3] and the fol-
lowing properties of superpixel segmentation are generally desirable. First,
superpixels should adhere well to the natural image boundaries. Second,
superpixel segmentation should be of low computational complexity. Last,
global image information should be considered appropriately. Utilizing the
perceptually important global clues to group pixels into semantically mean-
ingful regions usually lead to substantial increases in complexity [5]. As a
result, most practical superpixel segmentation algorithms are mainly based
on the local image information only[3]. These methods may fail to correctly
segment image regions with high intensity variability [2].
To address these issues, we present in this paper a superpixel segmentation
algorithm called Linear Spectral Clustering (LSC). In LSC, we map each
image pixel to a point in a ten dimensional feature space in which weighted
K-means is applied for segmentation. Non-local information is implicitly
preserved due to the equivalence between the weighted K-means clustering
in this ten dimensional feature space and normalized cuts in the original
pixel space. Simple weighted K-means clustering in the feature space can
be used to optimize the segmentation cost function defined by normalized
cuts. Corollary 1 gives the sufficient conditions for the objective functions
of weighted K-means and normalized cuts to share the same optimum point.
A simplified version of proof is given in our paper.

Corollary 1 Optimization of the objective functions of weighted K-means
and normalized cuts are mathematically equivalent if both (1) and (2) hold.

∀ p,q ∈V, w(p)ϕ(p) ·w(q)ϕ(q) =W (p,q) (1)

∀ p ∈V, w(p) = ∑
q∈V

W (p,q) (2)

Among the two sufficient conditions, (2) can be easily fulfilled, while ful-
filling (1) requires a careful selection of the similarity function W . Equation
(1) can be rewritten as (3), in which W can be regarded as a kernel func-
tion. Therefore, W must satisfy the positivity condition [1]. Also, it must be
separable to allow an explicit expression of the mapping function ϕ .

ϕ(p) ·ϕ(q) = W (p,q)
w(p)w(q)

(3)

To find a suitable form for W (p,q), we investigate the widely used Eu-
clidean distance based pixel similarity measurement. Given two pixels p =
(lp,αp,βp,xp,yp) and q = (lq,αq,βq,xq,yq) in the combination of CIELAB
and image plane space with normalized coordinates, a similarity measure-
ment between them can be defined as (4), in which Ŵc and Ŵs are used to
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measure color similarity and space proximity respectively.

Ŵ (p,q) = C2
c ·Ŵc(p,q)+C2

s ·Ŵs(p,q)

Ŵc(p,q) = 2.552
[
2− (αp −αq)

2 − (βp −βq)
2
]
+
[
1− (lp − lq)2

]
Ŵs(p,q) =

[
2− (xp − xq)

2 − (yp − yq)
2
]

(4)

Although Ŵ (p,q) has very clear physical meaning in measuring pixel sim-
ilarity, it cannot be directly used in our method because it does not satisfy
the positivity condition [1] required by (3). To solve this problem, we try to
find a proper approximation of Ŵ (p,q) using Fourier transform.

Ŵ (p,q) = C2
s
[
g(xp − xq)+g(yp − yq)

]
+C2

c
[
g(lp

−lq)+2.552 (g(αp −αq)+g(βp −βq)
)]

g(t) = 1− t2 ≈ 32
π

cos
π
2

t, t ∈ [−1,1] (5)

Ŵ (p,q) is a nonnegative linear combination of a number of g(t) which can
be expanded as a uniformly convergent Fourier series. The coefficients of
this series converge to 0 very quickly at a speed of (2k + 1)3. Therefore,
g(t) can be well approximated by the first term in the series as is expressed
in (5). Omitting the constant multiplier 32/π , Ŵ (p,q) can be approximated
by W (p,q) defined in (6). According to the properties of cosine function,
W (p,q) is positive definite and can be directly written in the inner product
form shown in (1), in which ϕ and w are defined in (7).

W (p,q) = C2
s

[
cos

π
2
(xp − xq)+ cos

π
2
(yp − yq)

]
+C2

c

[
cos

π
2
(lp − lq)+

2.552
(

cos
π
2
(αp −αq)+ cos

π
2
(βp −βq)

)]
(6)

ϕ(p) =
1

w(p)
(Cc cos

π
2

lp,Cc sin
π
2

lp,2.55Cc cos
π
2

αp,

2.55Cc sin
π
2

αp,2.55Cc cos
π
2

βp,2.55Cc sin
π
2

βp,

Cs cos
π
2

xp,Cs sin
π
2

xp,Cs cos
π
2

yp,Cs sin
π
2

yp)

w(p) = ∑
q∈V

W (p,q) = w(p)ϕ(p) · ∑
q∈V

w(q)ϕ(q) (7)

Until now, we have explicitly define a ten dimensional feature space in (7)
so that weighted K-means clustering in the feature space is equivalent to
normalized cuts in the input space. We perform superpixel segmentation by
applying weighted K-means in the feature space. Pixels assigned to the same
cluster form a superpixel. Experiments show that LSC performs equally
well or better than state of the art superpixel segmentation methods in terms
of several commonly used evaluation metrics in image segmentation.
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