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Locality-sensitive hashing (LSH) [1, 3, 5] is not only known as a data-
independent indexing method for approximate similarity search, but also
a compression algorithm for large-scale learning problems, where randomly
generates binary codes such that two similar items in database are nearly
embedded into Hamming space. Different similarity metric leads to various
LSH, including angle preservation [1], `p norm (p ∈ (0,2]) [2], and shift-
invariant kernels [5].

Most of high-dimensional visual descriptors for images exhibit a nat-
ural matrix structure. When visual descriptors are represented by high-
dimensional feature vectors and long binary codes are assigned, a random
projection matrix requires expensive complexities in both space and time.
Recently, bilinear projections are adopted to the angle-preserving LSH [4],
where the space and time complexities are O(

√
dk) and O(d

√
k), to gener-

ate binary codes of size k for a
√

d by
√

d matrix data. While promising
results for hashing with bilinear projection are reported in [4], its theoretical
analysis is not available yet.

In this paper we analyze a bilinear random projection method where
feature matrices are transformed to binary codes by two smaller random
projection matrices. We base our theoretical analysis on extending LSH
from shift-invariant kernels (referred to as LSH-SIK [5]). We consider a
hash function h(·) : Rdw×dv 7→ {0,1} that is of the form

h(X),
1
2

{
1+ sgn

(
cos
(
w>Xv+b

)
+ t
)}

, (1)

where w∼N (0, I), b∼Unif[0,2π], and t ∼Unif[−1,1]. To produce binary
code of size k = kwkv, the hash function H(·) : Rdw×dv 7→ {0,1}k takes the
form:

H(X),
1
2

{
1+ sgn

(
cos
(
vec(W>XV )+b

)
+ t
)}

, (2)

where each column of W or of V is independently drawn from spherical
Gaussian with zero mean and unit variance, each entry of b∈Rk or of t ∈Rk

is drawn uniformly from [0,2π] and [−1,1], respectively.
We attempt to answer two questions on whether: (1) bilinear random

projections also yield similarity-preserving binary codes like the original
LSH-SIK; (2) there is performance gain or degradation when bilinear ran-
dom projections are adopted instead of a large linear projection.

Regarding the first question, we present upper and lower bounds on the
expected Hamming distance between binary codes produced by bilinear ran-
dom projections. Theorem 1 and figure 1 (a) show that bilinear projections
can generate similarity-preserving binary codes, where the expected Ham-
ming distance is upper and lower bounded in terms of κg

(
vec(X−Y )

)
.

Theorem 1. Define the functions

g1(ζ ) ,
4

π2

(
1−ζ

0.79
)
,

g2(ζ ) , min
{

1
2

√
1−ζ ,

4
π2

(
1− 2

3
ζ

)}
,

where ζ ∈ [0,1] and g1(0) = g2(0) = 4
π2 , g1(1) = g2(1) = 0. Gaussian

kernel κg is shift-invariant, normalized, and satisfies κg(αx−αy)≤ κg(x−
y) for any α ≥ 1. Then the expected Hamming distance between any two
embedded points computed by bilinear LSH-SIK satisfies

g1

(
κg
(
τ
))
≤ E

[
I
[
h(X) 6= h(Y )

]]
≤ g2

(
κg
(
τ
))

, (3)

where τ = vec(X−Y ).
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Regarding the second question, we analyze the upper and lower bounds
on covariance between two bits of binary codes, showing that the corre-
lation between two bits is small. Theorem 2 and figure 1 (b) show that
the upper bound on covariance between two bits induced by bilinear pro-
jections is small, establishing the reason why bilinear projections performs
well enough in case of a large number of bits. We can easily see that the
covariance between the two bits for the highly similar (κg(vec(X−Y ))≈ 1)
is nearly zero, indicating that there is no correlation between the two bits.

Theorem 2. Given the hash functions hi(·) and h j(·) which share one of
projection vectors, the upper bound on the covariance between the two bits
is derived as

cov(·) ≤ 64
π4


 ∞

∑
m=1

κg
(
vec(X−Y )

)0.79m2

4m2−1

2

−

 ∞

∑
m=1

κg
(
vec(X−Y )

)m2

4m2−1

2
 ,

where κg(·) is the Gaussian kernel and cov(·) is the covariance between two
bits defined as

cov(·) = E
[
I
[
hi(X) 6= hi(Y )

]
I
[
h j(X) 6= h j(Y )

]]
− E

[
I
[
hi(X) 6= hi(Y )

]]
E
[
I
[
h j(X) 6= h j(Y )

]]
.
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Figure 1: Left panel (a) presents that upper and lower bounds on the ex-
pected Hamming distance between binary codes computed by bilinear pro-
jections and a single projection. Right panel (b) shows that upper bound on
covariance between the two bits induced by bilinear projections.

To conclude, our theoretical analysis have confirmed that: (1) random-
ized bilinear projection yields similarity-preserving binary codes in the sense
of Gaussian kernel; (2) the performance of LSH-SIK with bilinear projec-
tions is comparable to LSH-SIK with a single large projection.
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