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For most previous methods [1], [3], [4], [5], representation and classification
are developed independently, which violates the need that the representation
methods should serve and facilitate the subsequent classification methods
for visual recognition. In addition, these methods bring other issues such as
classifier restriction, computational complexity etc..

To address these issues, this paper presents a novel locally linear KNN
model with the goal of not only developing efficient representation and clas-
sification methods, but also establishing a relation between them to approx-
imate some classification rules, e.g. the Bayes decision rule for minimum
error.

First, the proposed model represents the test sample as a linear combina-
tion of all the training samples and derives a new representation by learning
the coefficients considering the reconstruction, locality and sparsity con-
straints as equation 1.

min
v
||x−Bv||2 +λ ||v||1 +α||v−βd||2 (1)

where x ∈ Rn is the test sample, B = [b1,b2, ...,bm] ∈ Rn×m is the training
sample matrix and coefficients vector v ∈ Rm is the derived representation.
The vector d = [d1,d2, ...,dm]

t ∈ Rm, and di = exp{− 1
2σ 2 ||x−bi||2}. The

parameter σ is used for adjusting the decay speed.
The theoretical analysis shows that the new representation has the group-

ing effect of the nearest neighbors (GENN), which is able to approximate
the “ideal representation”.

Theorem 0.1 Grouping effect of the nearest neighbors. Given a L2 nor-
malized test sample x (||x||2 = 1), the L2 normalized training sample ma-
trix B (||bi||2 = 1, i = 1,2, ...,m) and the vector d = [d1,d2, ...,dm]

t , let
v∗ = [v∗1,v

∗
2, ...,v

∗
m]

t be the solution to the LLKNN model defined in equa-
tion 1. Define the sample correlation ρ of two training samples bi and b j
as ρ = bt

ib j and the difference between the coefficients v∗i and v∗j (i, j =
1,2, ...,m) as

M(i, j) = |v∗i − v∗j | (2)

Then, if the signs of v∗i and v∗j are the same, we have

M(i, j)≤ C
α

√
2(1−ρ)+β |di−d j| (3)

where C =
√
(1+αβ 2||d||2), which is a constant.

And then the locally linear KNN model based classifier (LLKNNC) (see
equation 4) and the locally linear nearest mean classifier (LLNMC) (see
equation 5), whose relation is just like the KNN classifier to the nearest
mean classifier, are derived.

c∗ = argmax
c ∑

bi∈Bc

vi (4)

c∗ = argmin
c
||x−mc||22

= argmin
c
||x− ∑

bi∈Bc

vibi||22
(5)

The power of the proposed LLKNNC is guaranteed by establishing its
connection to the Bayes decision rule for minimum error in the view of
kernel density estimation as stated in theorem 0.2.

Theorem 0.2 Given the test sample x, the corresponding representation
v, the two transformations vi =

vi−vmin
vmax−vmin

and vi =
vi

∑
m
i=1 vi

are applied first,
where vmin and vmax is the minimal and maximal value among all the ele-
ments of the vector v.
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Figure 1: The system architecture of the proposed Locally Linear KNN
model.

Then, if the prior distribution p(c) is equal for all the classes, the Bayes
decision rule is approximated by the proposed LLKNN model based classi-
fier in the sense of kernel density estimation.

c∗ = argmax
c ∑

bi∈Bc

vi

≈ argmax
c ∑

bi∈Bc

βdi + const

∝ argmax
c

p(c|x)

(6)

Furthermore, theorem 0.2 tells us that the power of LLKNNC comes
from the kernel density estimation. Then there are two issues of the kernel
density estimation that should be resolved to improve the reliability, namely
the sensitiveness to the global window width denoted as the value of σ and
the adverse impact of distant neighbors.

As for the sensitiveness to the value of σ , the shifted power transforma-
tion [2] (see equation 7) is first applied to transform data to a near Gaussian
shape so that the new data can be well estimated. Then the L2 normalization
is further applied to the vector d.

T (x) = |x+λ1e|λ2 sign(x+λ1e) (7)

As for the adverse impact of distant neighbors, a coefficients cut-off
method is applied. The LLKNNC thus is defined as follows

c∗ = argmax
c ∑

(bi∈Bc)∧
(vi∈T (k))

vi (8)

where T(k) is the set of top k largest values of vi for each class. Similarly,
the LLNMC is defined as follows:

c∗ = argmin
c
||x− ∑

(bi∈Bc)∧
(vi∈T (k))

vibi||22 (9)

Experimental analysis on many representative databases such as MIT-
67 indoor scenes dataset and the Caltech 256 dataset demonstrate that our
method can achieve competitive results to the state-of-the-art methods.
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