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Each year, hundreds of catastrophic events impact vulnerable areas around
the world. Assessing the extent of damage caused by these crises is crucial
in the timely allocation of resources to help the affected populations. Since
disaster-locations are usually not readily accessible, the use of satellite im-
agery has emerged as a valuable source of information for estimating the
impact of catastrophic events.

However, currently these assessments are mostly done by analyzing the
pre- and post-event images of distressed areas by human photo-interpreters,
making it a labor-intensive and expensive process. It is therefore important
to scale-up damage detection to larger areas accurately and efficiently. Our
work is a step towards solving this problem.

In the following, we summarize some of the key challenges that need to
be addressed in this regard, and how our work contributes towards them:

1- Comprehensive Data-Set: Thus far, there has been a lack of compre-
hensive labeled data-set that could be used to explore automatic damage
detection at scale. To this end, we present a benchmark data-set of 86
pairs of pre- and post-event satellite imagery of distressed areas covering
4,665 KM2 with the associated ground truth of damaged regions acquired
by expert interpreters. This data-set was collected by using the satellites
of DigitalGlobe Inc. Our data-set covers 12 different regions from around
the world, and spans a wide range of terrains and climates, with a variety of
damage types (see Figure 1). To the best of our knowledge, the size and vari-
ability of our data makes our work the most thorough analysis of automatic
damage detection ever published thus far.

2- Appropriate Feature Choice: The scale of our problem naturally presents
an accuracy-efficiency tradeoff for the features being considered. To this
end, we introduce the use of trees-of-shapes features [3] in the bag-of-visual-
words model [1] that focuses more on the shape characteristics of a scene,
as opposed to its edge attributes as done by other popular descriptors e.g.,
SIFT [2] (see Figure 2 for tree-of-shapes illustration). Our results show that
this difference proves to be quite important to detect damaged areas accu-
rately. We present a thorough empirical analysis for the effectiveness of our
scheme, and compare it to multiple alternatives. Figure 3 shows the ROC
and EER obtained using multiple feature-sets used in different learning set-
tings. Figure 4) illustrates some example damages our framework was able
to automatically detect.

3- Label Acquisition Cost: Given the high skill-set required from the photo-
interpreters to assess the damage accurately, acquiring reliable ground-truth
labels is particularly challenging for our problem. This high label acqui-
sition cost makes it important to explore the various learning paradigms
that could utilize the labeled data effectively. To this end, we present a
thorough comparison of different learning strategies, including supervised,
unsupervised and semi-supervised methods. Our results suggest the use of
semi-supervised learning as a good trade-off between the label-acquisition
cost and the detection accuracy. We present a user-study of the photo-
interpretation efficiency provided by our framework, and report a ten-fold
speed-up compared to an exhaustive manual inspection, at a minimal loss in
detection accuracy.
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Figure 1: (Top) Example areas of interest shown with red dots. (Bottom) Different
instances of types of changes considered in our data-set.
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Figure 2: (a)- Illustration of tree of shapes. (b)- Example image of a roofless
building decomposed into its tree of shapes.
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Percent Positive Examples

Feature Type Unsupervised Supervised
SD 0.339± 0.088 0.123± 0.068

CNN 0.360± 0.120 0.161± 0.072
B-SIFT 0.462± 0.049 0.149± 0.071
B-LLC 0.447± 0.057 0.156± 0.074

GSD 0.429± 0.072 0.205± 0.077
O-Flow 0.473± 0.029 -

Equal Error Rate (EER)
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Figure 3: Average ROCs for multiple feature-sets used in (a) unsupervised,
and (b) supervised setting. EER as (c) a function of training size in super-
vised setting, and (d) for fixed training size in different learning settings.
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Figure 4: Example damaged areas detected by our framework.
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