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Figure 1: The framework of the proposed shape descriptor.

Complex geometric structural variations of 3D models usually pose great
challenges in 3D shape matching and retrieval. In the past decades, plenty
of shape descriptors have been proposed, such as the D2 shape distribution
[4], statistical moments [7]. Apart from the earlier shape descriptors, an-
other widely used shape signature is heat kernel signature (HKS) [6], where
Sun et al. proposed to use the diagonal of the heat kernel as a local descrip-
tor to represent shape. Nonetheless, these shape descriptors are hand-crafted
rather than learned from a set of training shapes. In [2], the authors applied
the bag-of-features (BOF) paradigm to learn the shape descriptor. In this
paper, we develop a novel auto-encoder based shape descriptor for retrieval,
which imposes the Fisher discrimination criterion on the hidden layer to
make the hidden layer features discriminative and insensitive to geomet-
ric structure variations. It is expected that the neurons in the hidden layer
have small within-class scatter but big between-class scatter. Moreover, we
train multiple discriminative auto-encoders and concatenate all neurons in
the hidden layers as the high-level learned shape descriptor for retrieval.

We detail the proposed framework of the discriminative auto-encoder
based shape descriptor, which comprises three components, namely, multi-
scale shape distribution, discriminative auto-encoder and 3D shape descrip-
tor. Figure 1 shows the proposed framework. In the multiscale shape dis-
tribution component, the distributions of heat kernel signatures of shape at
different scales are extracted as a low-level feature for use as input to the
discriminative auto-encoder. Then we train a discriminative auto-encoder to
learn a high level feature embedded in the hidden layer of the discriminative
auto-encoder component. In the 3D shape descriptor component, we form a
descriptor from all hidden layer representations of the multiple discrimina-
tive auto-encoders.

Shape distribution [5] refers to a probability distribution sampled from
a shape function describing the 3D model. We can consider HKS at each
scale as a shape function defined on the surface of a 3D model. Then the
shape distribution can be defined as the probability distribution of the shape
function. In this work, we use histogram to estimate the probability distri-
bution. For the scale t, we calculate the histogram of SSSt

i, j of N vertices of
the shape yyyi, j to form the shape distribution hhht

i, j . By considering probabil-
ity distributions of shape functions derived from HKS at different scales, a
multiscale shape distribution can be developed.

In order to boost the discriminative power of the shape distribution,
based on the auto-encoder [1], we propose a discriminative auto-encoder
for shape retrieval by imposing a Fisher discrimination criterion [3] on the
hidden features. Based on the Fisher discriminative criterion, the discrim-
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ination can be achieved by minimizing the within-class scatter of zzzt , de-
noted by Sw(zzzt), and maximizing the between-class scatter of zzzt , denoted by
Sb(zzzt). Sw(zzzt) and Sb(zzzt) are defined as:
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where mmmt
i and mmmt are the mean vector of zzzt

i and zzzt , respectively, and ni is the
number of samples of class i. Intuitively, we can define the discriminative
regularization term L(zzzt) as tr(Sw(zzzt))− tr(Sb(zzzt)). Thus, by incorporating
the discriminative regularization term into the standard auto-encoder model,
we can form the following objective function of the discriminative auto-
encoder:

J(WWW t ,bbbt) = argminWWW t ,bbbt
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To optimize the objective function of the discriminative auto-encoder, we
adopt the back-propagation method of the error. Implementation of the op-
timization is described in the paper.

In order to characterize the intrinsic structure of the shape more effec-
tively, we train multiple discriminative auto-encoders by setting multiscale
shape distributions to the inputs of the discriminative auto-encoder. That
is, for each scale t, we can learn WWW t and bbbt from a set of training shape
distributions, i.e., xxxt

1,xxx
t
2, · · · ,xxx

t
C, t = 1,2, · · · ,T . Thus, T discriminative

auto-encoders can be formed by T groups of shape distributions. Once the
multiple discriminative auto-encoders are trained, we can concatenate the
activations of all hidden layers to form a shape descriptor.

Our conclusion is that the proposed deep shape descriptor with the dis-
criminative auto-encoder for shape matching and retrieval is insensitive to
geometric structure variations and can achieve good performance in various
tests for matching and retrieving 3D shapes.
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