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Figure 1: Given two images, we compute matches using DeepMatching [6] and the edges of the first image using SED [3]. We combine these two cues to
densely interpolate matches and obtain a dense correspondence field. This is used as initialization of a one-level energy minimization framework.

Most state-of-the-art optical flow approaches are built upon an energy mini-
mization framework, often solved using efficient coarse-to-fine algorithms [1,
5]. A major drawback of coarse-to-fine schemes is error-propagation, i.e.,
errors at coarser levels, where different motion layers can overlap, can prop-
agate across scales. Even if coarse-to-fine techniques work well in most
cases, we are not aware of a theoretical guarantee or proof of convergence.

Instead, we propose to simply interpolate a sparse set of matches in a
dense manner to initialize the optical flow estimation, see Figure 1. This
novel procedure enables us to leverage recent advances in matching algo-
rithms, which can now output quasi-dense correspondence fields [6]. In the
same spirit as [4], we perform a sparse-to-dense interpolation by fitting a
local affine model at each pixel based on nearby matches. Nevertheless, a
major issue arises for the preservation of motion boundaries. We make the
following observation: motion boundaries often tend to appear at image
edges, see Figure 2. Consequently, we propose to exchange the Euclidean
distance with a better, i.e., edge-aware, distance and show that it offers a
natural way to handle motion discontinuities. Moreover, we show how an
approximation of the edge-aware distance allows to fit only one affine model
per input match (instead of one per pixel). This leads to an important speed-
up of the interpolation scheme without loss in performance.

Figure 2: Image edges detected with SED [3] and ground-truth optical flow.
Motion discontinuities appear most of the time at image edges.

The obtained interpolated field of correspondences is sufficiently accu-
rate to be used as initialization of a one-level energy minimization. Our
work thus suggests that there may be better initialization strategies than the
well-established coarse-to-fine scheme. EpicFlow performs best on the chal-
lenging MPI-Sintel dataset and is competitive on Kitti and Middlebury.

Method AEE AEE-occ s0-10 s10-40 s40+ Time
EpicFlow 6.285 32.564 1.135 3.727 38.021 16.4s
TF+OFM 6.727 33.929 1.512 3.765 39.761 ∼400s
DeepFlow 7.212 38.781 1.284 4.107 44.118 19s
S2D-Matching 7.872 40.093 1.172 4.695 48.782 ∼2000s
Classic+NLP 8.291 40.925 1.208 5.090 51.162 ∼800s
MDP-Flow2 8.445 43.430 1.420 5.449 50.507 709s

Table 1: Results on MPI-Sintel test set (final version). AEE-occ is the
Average Endpoint Error on occluded areas. s0-10 is the AEE for pixels
whose motions is between 0 and 10 px and similarly for s10-40 and s40+.

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

Table 1 shows the results on the challenging MPI-Sintel dataset [2].
EpicFlow outperforms the state of the art with a gap of 0.5 pixel in AEE
compared to the second best performing method, TF+OFM, and 1 pixel
compared to the third one, DeepFlow [6]. In particular, we improve for both
AEE on occluded areas and AEE over all pixels and for all displacement
ranges. In addition, our approach is significantly faster than most of the
methods, e.g. an order of magnitude faster than the second best. We can see
in the examples of Figure 3 that EpicFlow better respects motion boundaries
and is able to preserve small details. We provide in the paper an extensive
evaluation of our method in terms of input matches and contours as well as
a comparison to a standard coarse-to-fine scheme.
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Figure 3: Example results.
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