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Predicting the depth (or surface normal) of a scene from single monoc-
ular color images is a challenging task. This paper tackles this challenging
and essentially under-determined problem by regression on deep convolu-
tional neural network (DCNN) features, combined with a post-processing
refining step using conditional random fields (CRF). Our framework works
at two levels, super-pixel level and pixel level. First, we design a DCNN
model to learn the mapping from multi-scale image patches to depth or sur-
face normal values at the super-pixel level. Second, the estimated super-
pixel depth or surface normal is refined to the pixel level by exploiting
various potentials on the depth or surface normal map, which includes a
data term, a smoothness term among super-pixels and an auto-regression
term characterizing the local structure of the estimation map. The inference
problem can be efficiently solved because it admits a closed-form solution.
Experiments on the Make3D and NYU Depth V2 datasets show competitive
results compared with recent state-of-the-art methods.

1 Multi-scale regression via transferring network

To encode the depth and surface normal, we use deep network and formulate
the estimation as a regression problem, where the relationship between im-
age patch and its corresponding depth or surface normal is estimated through
a new deep network built upon the network architecture of Krizhevsky et
al [3].

Our deep network architecture is illustrated in Fig. 1. The first part,
namely “shared weights”, is initialized by the pre-trained net of [2] and kept
unchanged during training. The input of our network is the multi-scale patch
blocks. We add an concatenation layer to fuse the multi-scale information.
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Figure 1: architecture of our CNN model

For both task, the Euclidean loss function is used,

E =
1

2N

N

∑
i=1
‖x̂i−xi‖2

2, (1)

where xi and x̂i are the ground truth and regressed value respectively. In our
paper, xi could be depth value or surface normal.

2 Refining via Hierarchical CRF

Our refining cost function 2 consists of three terms, namely the data term,
super-pixel smoothness term and auto-regression term at pixel level. As for
the normal vector refining, we transfer the normal vector to the spherical
coordinate (θ ,φ) and refine them respectively. Here, let X be the set of
variable which could be the depth or surface normal map.

E(X )= ∑
i∈S

φi(xi)+ ∑
(i, j)∈ES

φi j(xi,x j)+ ∑
C∈P

φC(xC) (2)
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where ES denotes the set of pairs of super-pixels that share a common
boundary and P is the set of patches( size of 3× 3 ) designed on the pixel
level.

Potential 1: Unary term

φi(xi) = (xi− xi)
2 , (3)

where xi denotes the depth regression result from our multi-scale deep net-
work, this term is defined at the super-pixel level, measuring the quadratic
distance between the estimated depth xi and regressed depth xi.

Potential 2: Smoothness at super-pixel level

φi j(xi,x j) = w1

(
xi− x j

λi j

)2
, (4)

The quadratic distance is weighted by λi j, the color difference between con-
nected super-pixels in LUV color space [1].

Potential 3: Auto-regression model
Here we use the auto-regression model to characterize the local correlation
structure in the depth map. The key hypothesis of the auto-regression model
is that neighboring pixels with similar intensities should have similar depth
or angle [4, 5]. The auto-regression potential can be expressed as:

φC(xC) = w2

(
xu− ∑

r∈C/u
αurxr

)2

. (5)

where C is the neighbourhood of pixel u and αur denotes the model auto-
regression coefficient for pixel r in the neighbourhood C.

A closed form solution Once the parameters in our Hierarchical CRF are
determined, the MAP solution can be obtained in closed form solution. For
convenience of expression, we express the energy function Eq. (2) in matrix
form:

E(x) = ‖Hx−x‖2
2 +w1‖QHx‖2

2 +w2‖Ax‖2
2, (6)

As the energy function is quadratic with respect to x, a closed-form
solution can be derived algebraically:

xmap = (H>H+w1H>Q>QH+w2A>A)−1H>x. (7)
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