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Figure 1: Schematic illustration of EDD. we observe samples sets, St (blue dots), from a time varying probability distribution, dt , at different points of time (blue curves).
Using the framework of RKHS embeddings, we compute their empirical kernel mean maps, µ̂t =

1
|St |∑z∈St φ(z) in a Hilbert space H. We learn an operator A : H→H that

approximates the dynamics from any µ̂t to µ̂t+1 by vector-valued regression (thick gray arrows). By means of A we extrapolate the distribution dynamics beyond the last
observed distribution (thick dashed arrow), thereby obtaining a prediction, µ̃4, for the embedding of the unobserved target distribution d4 (dotted blue curve). If desired, we
apply herding (thin dashed arrow) to produce a new sample set (orange dots) for the predicted distribution (orange curve).

It is a long lasting dream of humanity to build a machine that can predict the
future. In this work we aim at making a first step towards giving computers
such abilities, at least on very short time scales.

We study the situation of a time-varying probability distribution from
which sample sets at different time points are observed. Our main result is
a method for learning an operator that captures the dynamics of the time-
varying data distribution based on two recent machine learning techniques:
the embedding of probability distributions into a reproducing kernel Hilbert
space and vector-valued regression. By extrapolating the learned dynamics
into the future we obtain an estimate of the future distribution in form of a
(potentially weighted) set of samples.

Let Z be a data domain and let dt(z) for t ∈ N be a time-varying data
distribution over z ∈ Z . At a fixed point of time, T , we assume that we
have access to sequences of sets, St = {zt

1, . . . ,z
t
nt
}, for t = 1, . . . ,T , that

were sampled i.i.d. from the respective distributions, d1, . . . ,dT . Our goal
is to construct a distribution, d̃T+1, that is as close as possible to the so far
unobserved dT+1. Optionally, we might also want to construct a set, S̃, of
samples that are distributed approximately according to dT+1. This in work
we propose a method for extrapolating the distribution dynamics (EDD) that
consists of four steps, see Figure 1 for an illustration.

a) We represent each sample set, St , as a vector in a Hilbert space
through its empirical (kernel mean) embedding [4]

S 7→ µ̂(S), for µ̂(S) =
1
|S| ∑z∈S

φ(z), (1)

where φ : Z →H is the feature map induced by a positive definite
kernel function k : Z ×Z → R with associated reproducing kernel
Hilbert space (RKHS) H.

b) We learn an operator that reflects the dynamics between the vectors
by solving the regularized vector-valued regression problem [3]

min
A∈F

T−1

∑
t=1
‖µ̂t+1−Aµ̂t‖2

H + λ‖A‖2
F (2)
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for λ ≥ 0. The solution can be written in closed form (see [2])

Ã =
T−1

∑
t=1

µ̂t+1

T−1

∑
s=1

Wts〈µ̂s, ·〉H, (3)

with coefficient matrix W = (K + λ I)−1, where K ∈ R(T−1)×(T−1)

is the kernel matrix with entries Kst = 〈µ̂s, µ̂t〉H, and I is the identity
matrix of the same size.

c) We extrapolating the distribution dynamics by one step by applying
the learned operator, Ã, to the last vector in the sequence, µ̂T . The
resulting prediction, µ̃T+1 = Ãµ̂T , can be written as a weighted linear
combination of the observed distributions,

µ̃T+1 =
T

∑
t=2

βt µ̂t with βt+1 =
T−1

∑
s=1

Wts〈µ̂s, µ̂T 〉H, (4)

for t = 1, . . . ,T − 1. The coefficients, βt , can be computed from the
original sample sets by means of only kernel evaluations, because
〈µ̂s, µ̂t〉H = 1

nsnt
∑

ns
i=1 ∑

nt
j=1 k(zs

i ,z
t
j).

d) Optionally, we use kernel herding [1] to create a new sample set,
S̄T+1, for the extrapolated distribution, i.e. µ̂(S̄T+1)≈ µ̃T+1.

Experiments on synthetic and real data show that EDD is in fact able to
extrapolate the distribution dynamics and that this can be used for practical
tasks, such as domain adaptation in situations when no training examples
from the target distribution are available, not even unlabeled ones.
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