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Image classification frameworks generally consist of (a) extracting local fea-
tures (e.g. SIFT), (b) transforming them into more informative codes, and
(c) using these codes for classification (e.g., by using linear SVM). Over the
years, several different image encoding techniques have been proposed. As
reported in [1], given all things equal, most of these encoding schemes tend
to produce impressive yet comparable classification accuracies. At the same
time however, they can be computationally expensive. Particularly during
the testing phase, their complexity can be a significant proportion of image
classification pipeline (see Table 1). This limitation often makes it challeng-
ing to use these encoding schemes for large-scale learning problems.

Extract Assign Encode Pool Test

% Times 6.77% 37.76% 42.50% 7.01% 5.93%
Table 1: %-times taken by different steps during testing for LLC [2]. Here
D = 128, M = 1024, and K = 10.

In this work, we propose an approximate locality-constrained [2] encod-
ing scheme that which is well-suited to efficiently run on modern hardware
architectures, and offers significantly better efficiency than its exact coun-
terpart, with comparable classification accuracy.

Our key insight is that for locality-constrained encodings, the set of
bases used to encode a point x, can be used equally effectively to encode
a group of points similar to x. This observation enables us to approxi-
mately encode similar groups of points simultaneously by using shared sets
of bases, as opposed to exactly encoding points individually each using their
own bases (see Figure 1 for illustration, and Algorithm 1 for an enlisting of
our approach). This difference improves our encoding efficiency in two im-
portant ways:

• It significantly reduces the number of locality related matrices needed
to be factored, from number of points (O(millions)) to number of
point-clusters (O(thousands)).

• It lets us view the encoding problem of each point-group as a lin-
ear system with a shared left hand side. Solving such a system can
be posed as matrix-matrix multiplication that can fully exploit the
cache-efficient modern hardware architecture.

These efficiency advantages enable our approximate scheme to achieve a
significant speed-up (∼ 40×) over its exact counterpart, while maintaining
comparable accuracy. Our accuracy and efficiency results are summarized
in Table 2 and Figure 2. The comparisons with state-of-the-art methods are
summarized in Table 3.

To summarize, the main contributions of our work are:
• A simple yet effective approximate encoding scheme with significant

performance gains and similar classification accuracy compared to its
exact counterpart.

• A formal approximation analysis of our approach using perturbation
analysis of least-square problems.

• A thorough set of empirical analyses to assess the capability of our
encoding scheme both from a representational as well as a discrimi-
native perspective.
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This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: (Left) Locality-constrained encoding [2] finds different sets of
bases nearest to each feature to exactly construct its locally-constrained
codes. (Right) In contrast, we approximately encode clusters of points si-
multaneously by using shared sets of bases nearest to the cluster-centroid.

Algorithm 1 Hardware Compliant Approximate Encoding

1: Input: Image descriptors X ∈ RD×N, codebook B ∈ RD×M, cluster as-
signment for all the descriptors

2: Output: Approximate image codes C̃ ∈ RM×N

3: Form X1,X2, · · · ,XM by gathering the descriptors belonging to each
individual cluster

4: for m = 1 to M do
5: Determine Bm ∈ RD×K

6: Compute left-hand side BmTBm ≡W
7: Perform Cholesky factorization: W = LLT

8: Compute right-hand side BmTXm ≡ Y
9: Solve LZ = Y for Z, and LTC̃m = Z for C̃m

10: end for
11: Normalize each column of C̃ to unit L2 norm

Accuracy Timing

LLC Proposed LLC Proposed Speed-Up

Caltech-101 72.16±0.7 71.35±0.8 512.8 sec. 12.9 sec. 39.8×
Caltech-256 37.04±0.3 35.69±0.2 1779 sec. 47.3 sec. 37.6×
Pascal-07 51.95 52.90 208.0 min. 4.86 min. 42.8×
MIT Scenes 38.30 39.91 473.3 sec. 12.8 sec. 37.0×

Table 2: Classification accuracies and timing results for encoding on differ-
ent data-sets using the exact LLC [2] and the proposed approximate encod-
ing.

(n = 30) (n = 15)

PSC Proposed Proposed LcSA SA SC

Accuracy 76.71 76.43 72.54 71.90 71.60 74.60
Run-time 0.45 sec 0.258 sec 0.258 sec 1.06 sec 66.6 sec 106.4 sec

Table 3: Classification accuracy and run-time per image for state-of-the-
art image coding methods on Caltech-101. The parameters n indicates the
number of training images per category.
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Figure 2: (a) Accuracy with respect to training size. (b) Efficiency compar-
ison.
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