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Deep neural networks have achieved remarkable performance in both
image classification[3] and object detection[1] problems at the cost of large
amount of parameters and computational complexity. Results of ILSVRC
competitions in recent years have demonstrated a strong correlation between
the network size and the classification accuracy. The ILSRVR 2014 submis-
sion from VGG[4] builds a network with up to 16 convolutional layers that
reduces the top-5 classification error to 7.4%, at the expense of approxi-
mately one month of network training with 4 high-end GPUs.

The structure of these networks makes it reasonable to conjecture that
there exists significant redundancy in these huge networks. In this paper,
we show that this redundancy makes it possible to significantly reduce the
amount of computation required to process images by sparse decomposi-
tions over the convolutional kernels. Figure 1 shows the basic idea of our
decomposition methods. Both inter-channel and intra-channel redundancy
are exploit.

output	  feature	  maps	  

output	  feature	  maps	  

kernel	  
	  basis	  

input	  feature	  maps	  
input	  feature	  maps	  

convolu1on	  kernels	  

channel	  
	  	  	  basis	  

sparse	  
kernel	  
matrix	  

Figure 1: Overview of our sparse convolutional neural network. Left: the operation of
convolution layer for classical CNN, which convolves large amount of convolutional
kernels with the input feature maps. Right: our proposed SCNN model. We apply
two-stage decompositions over the channels and the convolutional kernels, obtaining
a remarkably(more than 90%) sparse kernel matrix, and converting the operation of
convolutional layer to spare matrix multiplication

We first perform an initial decomposition based on reconstruction er-
ror of kernel weights, then fine-tune the network while imposing sparsity
constraint. In the fine-tuning phase, we optimize the network training error,
the sparsity of convolutional kernels as well as the number of convolutional
basis simultaneously by minimizing a sparse group-lasso object function.
Surprisingly high sparsity can be achieved in our model. As illustrated in
the row for sparsity of Table 1, we are able to zero out more than 90% of the
convolutional kernel parameters of the network in [3] with relatively small
number of basis while keeping the loss of accuracy less than 1%.

In our Sparse Convolutional Neural Networks (SCNN) model, each
sparse convolutional layer can be performed with a few convolution kernels
followed by a sparse matrix multiplication. It could be assumed that the
sparse matrix formulation naturally leads to highly efficient computation.
However, computing sparse matrix multiplication can involve significant
overhead that makes it difficult to actually achieve significant acceleration.
Thus, we also propose an efficient sparse matrix multiplication algorithm.
Based on the fact that the sparse convolutional kernels are fixed after train-
ing, we avoid the necessity of indirect and discontinuous memory access by

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.

(a) An example sparse
matrix B. The shad-
owed blocks represent
non-zero elements and
the blank blocks repre-
sent zero elements.

our modification for sparse matrix.

4.1 Matrix Multiplication in OpenBLAS

There are two main considerations on designing an efficient matrix multiplication algorithm: (a) Maxi-
mumly utilizing the caches for computation; (b) Taking advantage of SIMD (Single Instruction Multiple
Data) instructions for higher computing capacity. Figure. 2 shows the matrix multiplication algorithm de-
signed in OpenBLAS. In OpenBLAS, the authors split the input matrices into blocks that can be stored
completely into the L2 cache of CPUs, and iteratively multiply 8-elements wide strips. Since there are 16
256 bits wide registers in the AVX instruction sets, each SIMD instruction can multiply 8 float element at
a time. The result of multiplying two strips can be stored in 8 256 bit registers, thus saving the time for
writing the result to memory after each multiplication.

4.2 Efficient Sparse Matrix Multiplication

We assume that one of the input matrices is sparse and the other one is dense. And we assume that the sparse
matrix is known before calculation (even before the compilation of the code), and the dense matrix changes
for each call of the multiplication function.

For dense matrix multiplication, the computation time is dominant over the data loading time. There are
two types of data loading. The first one is loading the blocks to the L2 cache of CPU, and the second one is
loading each strips from the L2 cache to the registers of CPU. In OpenBLAS, the first one is only less than
1
10 of the total running time, while the second one can be up to 1

3 of the running time. However, due to the
pipeline design of modern CPU, the second loading can run in parallel with the data computation, therefore
the overhead of loading is very small for the whole pipeline.

However, if one of the input matrix is sparse, the amount of computation is greatly reduced, therefore
the second loading time becomes the dominant time consuming operations. Our focus is to deal
Input:

A: 8× 12 dense matrix
B: 12× 8 sparse matrix

Output:
C = A×B

Operations:
c7+ = a1 × b1,7
c3+ = a2 × b2,3
c6+ = a3 × b3,6
c2+ = a5 × b5,2
c5+ = a5 × b5,5
c4+ = a7 × b7,4
c5+ = a7 × b7,5
c3+ = a10 × b10,3
c5+ = a10 × b10,5
c4+ = a11 × b11,4
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(b) Generated Pseudo
code for calculating
C = A×B. ci is the ith
column of C and aj is
the jth column of A. bi, j

is the element of B at ith
column and jth row

Figure 2: An example that illustrates how our algorithm generates code for calculating
a dense matrix and a sparse matrix

layer conv1 conv2 conv3 conv4 conv5
sparsity% 0.927 0.950 0.951 0.942 0.938
theoretical speedup 2.61 7.14 16.12 12.42 10.77
Actual speedup 2.47 4.52 6.88 5.18 3.92

Table 1: Sparsity, theoretical and actual speedup corresponding to each convolutional
layer for our SCNN model. Results demonstrates that our highly sparse model could
lead to remarkably acceleration for computation.

encoding the structure of the input sparse matrix into our program as the
index of registers. Figure. 2 gives a simple example of how we generate
codes from a sparse matrix. As illustrated in the last two rows of Table 1
,our CPU-based implementation demonstrates much higher efficiency than
off-the-shelf sparse matrix libraries and a significant speedup over the orig-
inal dense network are realized. While convolutional network systems are
dominated by GPU-based approaches, advances in CPU-based systems are
useful because they can be deployed in commodity clusters that do not have
specialized GPU nodes.

We further apply SCNN to object detection problem. We apply SCNN
to accelerate the convolutional layers of SPP[2] model. To reduce the run-
ning time of fully connected layer, we propose to (1) sparsify the fully con-
nected layer (2) adopt a cascade model composed of the last convolutional
layer and the last fully connected layer.
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