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Markov Random Fields (MRFs) have been used for a wide range of prob-
lems in computer vision. In this study, we propose a general method for ef-
ficiently solving their marginal inference problem by transforming the orig-
inal MRF model into a smaller, simpler one. While many existing methods
[1, 2, 4, 5, 6] that transform MRFs only focuses on the MAP estimation
problem and empirically transform the energy function, our method system-
atically derives transformed MRFs suited for the marginal inference prob-
lem.

The core of our approach is as follow. Let the probability distribution
of a MRF be p0(x) ∝ exp(−E0(x)), where E0(x) is an energy function of
the MRF. We consider the case where the marginal inference problem with
p0(x) is intractable or computationally costly. We propose to introduce a
new variable z1 and construct a simpler MRF model p1(z) ∝ exp(−E1(z1))
where the energy is given by

E1(z1) = ∑
x

q0,1(x|z1)
{

E0(x)+ lnq0,1(x|z1)
}
. (1)

Here q0,1(x|z1) is a conditional distribution that we choose depending on
applications. The procedure after choosing q0,1(x|z1) is as follows.

1. Compute the energy function E1(z1) from E0(x0) and q0,1(x|z1).

2. Compute the marginal distributions for the transformed MRF (having
E1(z1) as the energy) by using a selected algorithm (e.g., Mean Field
Approximation, Belief Propagation, etc.).

3. Compute approximate marginal distributions of p0(x) from those of
p1(z1) obtained above.

An obvious issue is how to choose q0,1(x|z1). The energy function
E1(x) of the transformed MRF is determined by the variable space of z1 and
q0,1(x|z1). Our method causes at least three practical applications (Fig.1),
which are i) the discretization of variable space, ii) the grouping of discrete
labels, and the iii) coarse graining of MRFs. The discretization of vari-
able space transforms a MRF model which has a continuous variable and
is impossible to derive marginal distributions into a simpler MRF having a
discrete variable. The grouping of discrete labels groups multiple discrete
labels into one label. The coarse graining of MRFs transforms graphs into
smaller ones in such a way that a number of connected sites are grouped into
a single site. The specific forms o q0,1(z|x) and E1(z1) is given in our main
paper. In the paper, we also show how some of these MRF transformations
are combined in a coarse-to-fine manner, and how our MRF transformation
approach is also applied to Markov chain Monte Carlo methods.

Through several experiments, we confirmed the effectiveness of our
proposed method. For a grid pairwise CRF model we considered a prob-
lem that finds the best parameter representing the interaction between two
sites. We used the MSRC-21 dataset [3] for the experiments, and applied
the two of the above methods for downsizing CRF. The first is grouping dis-
crete labels, where we reduced the number of labels to K for each pixel. The
second is coarse graining of the MRF, where we downsized the original grid
MRF by grouping the pixels in b×b square blocks into a single superpixel.

Table 1 shows quantitative results. The “disparity" column shows the
mean differences of the parameter between the full MRF and its downsized
versions. The “accuracy" column shows the percentage of correctly labeled
pixels. This indicates that both two transformations succeeded in reducing
the learning time while maintaining the accuracy.
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Figure 1: Three practical applications of our method. Upper row: dis-
cretization of continuous variable space. Middle row: grouping of discrete
labels. Bottom row: coarse graining of MRFs.

Table 1: Quantitative results on the MSRC-21 dataset.
time [h] speedup disparity accuracy

full MRF 9.5 - 0.0 81.6
2 labels 0.89 10.6× 0.01235 77.8
3 labels 0.95 10.0× 0.00526 80.7
4 labels 1.0 9.2× 0.00496 81.3
5 labels 1.1 9.0× 0.00473 81.3

4×4 grid 0.66 14.4× 0.215 81.5
3×3 grid 1.1 8.5× 0.236 81.6
2×2 grid 2.5 3.9× 0.237 81.7
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