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Figure 1: An example illustrating our approach. Given an image with non-
uniform motion blur (left). We first estimate the field of non-uniform motion
blur kernels by a convolutional neural network (middle), then deconvolve
the blurred image (right).

Non-uniform deblur has been a challenge in computer vision. Methods
in [4, 5, 8] work on non-uniform blur caused by camera rotations, in-plane
translations or forward out-of-plane translations. They are effective for re-
moving non-uniform blur consistent with these motion assumptions. An-
other category of approaches works on non-uniform motion blur caused
by object motion. They estimate blur kernels by analyzing image statis-
tics [7], blur spectrum [1], or with a learning approach using hand-crafted
features [2]. Other approaches [6, 9] jointly estimate sharp image and blur
kernels using sparsity prior.

In this work, we propose a novel deep learning-based approach to es-
timating non-uniform motion blur, followed by a patch statistics-based de-
blurring model adapted to non-uniform motion blur, as illustrated in Fig. 1.
We estimate the probabilities of motion kernels at the patch level using a
convolutional neural network (CNN) [3], then fuse the patch-based esti-
mations into a dense field of motion kernels using a Markov random field
(MRF) model. To fully utilize the CNN, we propose to extend the candi-
date motion kernel set predicted by CNN using an image rotation technique.
Due to the strong feature learning power of CNNs, we can well predict the
challenging non-uniform motion blur that can hardly be well estimated by
the state-of-the-art approaches.

We next briefly introduce our approach. Given a blurry image I, we rep-
resent the local motion blur kernel at an image pixel p ∈Ω (Ω is the image
region) by a motion vector mp =(lp,op), which characterizes the length and
orientation of the motion field in p when the camera shutter is open. Each
motion vector determines a motion kernel with non-zero values only along
the motion trace. The blurry image can be represented by I = k(M)∗ I0, i.e.,
the convolution of a latent sharp image I0 with the non-uniform motion blur
kernels k(M) determined by the motion field M = {mp}p∈Ω.

To predict motion blur kernels (or equivalently, the motion vector) at
the patch level, we decompose the image into overlapping patches of size
30×30. Given a blurry patch Ψp centered at pixel p, we aim to predict the
probabilistic distribution of motion kernels P(m = (l,o)|Ψp), for all l ∈ Sl

and o ∈ So, Sl and So are the sets of motion lengths and orientations respec-
tively. We call this distribution as motion distribution. In our implementa-
tion, we discretize the range of motion length into 13 samples from l = 1
to 25 with interval of two, and discretize the range of motion orientation
[0,180◦) into 6 samples from 0◦ to 150◦ with interval of 30◦.

Taking the problem of motion kernel estimation as a learning prob-
lem, we utilize convolutional neural network to learn the effective features
for predicting motion distributions. The CNN is constructed as shown in
Fig. 2. To train the CNN model, we generate a large set of training data
T = {Ψk,mk}K

k=1, which are composed of around 1.4 million blurry patch /
motion kernel pairs. Using Caffe [3], we train the CNN model in one mil-
lion iterations with batches of 64 patches in each iteration. Because the final
layer is a soft-max layer, we can predict the probabilities of motion kernels
given an observed blurry patch Ψ as
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Figure 2: Structure of CNN for motion kernels prediction. It is composed
of 6 layers of convolutional layers and fully connected layers. It outputs the
probability of each candidate motion kernel using soft-max layer.

P(m = (l,o)|Ψ) =
exp((wS6

c )T φF5(Ψ))

∑n exp((wS6
n )T φF5(Ψ))

, (1)

where wS6
c is the vector of weights on neuron connections from F5 layer to

the neuron in S6 layer representing the motion kernel (l,o), c is the index
of (l,o) in S. φF5(Ψ) is the output features of F5 layer of a blurry patch Ψ,
which is a 1024-dimensional feature vector.

Extending the Motion Kernel Set of CNN. Our learned CNN model
can predict the probabilities of 73 candidate motion kernels that were used as
labels in CNN training. We further extend this motion kernel set to enable
the prediction for motion kernels beyond them. We achieve this goal by
feeding the original patch and its rotated versions into CNN, then we can
estimate the probabilities of motion kernels that may be not belonged to the
motion kernel set of CNN. By this rotation technique, our CNN can predict
motion distribution of image patch over 361 motion kernel candidates.

Dense Motion Field Estimation by MRF. Given the motion distribu-
tion at patch level, we then estimate the dense motion field M = {mp =
(lp,op)}p∈Ω over image I by optimizing the following MRF model:

minM ∑
p∈Ω

[−C(mp = (lp,op))+ ∑
q∈N(p)

λ [(up−uq)
2 +(vp− vq)

2], (2)

where (up,vp) and (uq,vq) are motion vectors mp and mq in Cartesian co-
ordinates, C(mp) is the confidence of motion kernel mp at pixel p . N(p) is
the neighborhood of p. By minimizing the energy function, we can estimate
a smooth motion vector field over the blurry image.

Non-Uniform Motion Deblurring. With the dense non-uniform mo-
tion kernels estimated by CNN, we deconvolve the blurry image by adapting
the uniform deconvolution approach in [10] to the non-uniform deconvolu-
tion problem. The non-uniform deconvolution is modeled as optimizing:
minI

λ

2 ||k(M) ∗ I−O||22−∑i∈Ω log(P(RiI)) where O is the observed blurry
image, Ri is an operator to extract the patch located at i from an image.
P(·) is the prior distribution of natural image patches, which is modeled
as a Gaussian mixture model learned from natural image patches [10]. By
optimizing this energy function, we can estimate the final deblurred image.
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